IDH1 (isocitrate dehydrogenase 1) mutations play a key role in the development of low-grade gliomas. IDH1 converts isocitrate to α-ketoglutarate while reducing nicotinamide adenine dinucleotide phosphate (NADP), whereas IDH1 uses α-ketoglutarate and NADPH to generate the oncometabolite 2-hydroxyglutarate (2-HG). While the effects of 2-HG have been the subject of intense research, the 2-HG independent effects of IDH1 are still ambiguous. The present study demonstrates that IDH1 expression but not 2-HG alone leads to significantly decreased tricarboxylic acid (TCA) cycle metabolites, reduced proliferation, and enhanced sensitivity to irradiation in both glioblastoma cells and astrocytes in vitro. Glioblastoma cells, but not astrocytes, showed decreased NADPH and NAD levels upon IDH1 transduction. However, in astrocytes IDH1 led to elevated expression of the NAD-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT). These effects were not 2-HG mediated. This suggests that IDH1 cells utilize NAD to restore NADP pools, which only astrocytes could compensate via induction of NAMPT. We found that the expression of NAMPT is lower in patient-derived IDH1-mutant glioma cells and xenografts compared to IDH1-wildtype models. The Cancer Genome Atlas (TCGA) data analysis confirmed lower NAMPT expression in IDH1-mutant versus IDH1-wildtype gliomas. We show that the IDH1 mutation directly affects the energy homeostasis and redox state in a cell-type dependent manner. Targeting the impairments in metabolism and redox state might open up new avenues for treating IDH1-mutant gliomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966450PMC
http://dx.doi.org/10.3390/cancers11122028DOI Listing

Publication Analysis

Top Keywords

redox state
12
idh1
9
gliomas idh1
8
effects 2-hg
8
glioblastoma cells
8
cells astrocytes
8
nampt expression
8
cells
5
2-hg
5
mutant idh1
4

Similar Publications

Impact of galectin-1's redox state on its lectin activity and monomer-dimer equilibrium. Focusing on oxidized Gal-1.

Int J Biol Macromol

January 2025

Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic. Electronic address:

Galectin-1 (Gal-1) displays unique sensitivity to oxidative inactivation which appears critical in regulating its spatial and temporal activity. The two physicochemical states, i.e.

View Article and Find Full Text PDF

Quantification of L-lactic acid in human plasma samples using Ni-based electrodes and machine learning approach.

Talanta

December 2024

NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:

This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).

View Article and Find Full Text PDF

Acetochlor degradation in anaerobic microcosms with hyporheic sediments: Insights from biogeochemical data, transformation products, and isotope analysis.

Water Res

December 2024

Hubei Key Laboratory of Yangtze River Basin Environmental Aquatic Science, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, PR China. Electronic address:

Steep redox gradients and diverse microbial communities in the anaerobic hyporheic zone create complex pathways for the degradation of herbicides, often linked to various terminal electron-accepting processes (TEAPs). Identifying the degradation pathways and their controlling factors under various TEAPs is of great significance for understanding mechanisms of water purification in the hyporheic zone. However, current research on herbicides in this area remains insufficient.

View Article and Find Full Text PDF

Arginine as a multifunctional additive for high performance S-cathode.

ChemSusChem

January 2025

Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.

Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.

View Article and Find Full Text PDF

Coastal redox shifts over the past 167 years and preservation of total organic carbon and total nitrogen.

Mar Pollut Bull

January 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.

This study reconstructs the environmental history of Xincun Lagoon over the past 167 years using sediment core XCW, employing Cu/Zn as a proxy for redox changes. Time-series analysis of Cu/Zn ratios reveals a significant decline (linear regression slope = -0.00082, p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!