Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biocompatible platforms, wherein cells attach and grow, are important for controlling cytoskeletal dynamics and steering stem cell functions, including differentiation. Among various components, membrane integrins play a key role in focal adhesion of cells (18-20 nm in size) and are, thus, highly sensitive to the nanotopographical features of underlying substrates. Hence, it is necessary to develop a platform/technique that can provide high flexibility in controlling nanostructure sizes. We report a platform modified with homogeneous nanohole patterns, effective in guiding neurogenesis of mouse neural stem cells (mNSCs). Sizes of nanoholes were easily generated and varied using laser interference lithography (LIL), by changing the incident angles of light interference on substrates. Among three different nanohole patterns fabricated on conductive transparent electrodes, 500 nm-sized nanoholes showed the best performance for cell adhesion and spreading, based on F-actin and lamellipodia/filopodia expression. Enhanced biocompatibility and cell adhesion of these nanohole patterns ultimately resulted in the enhanced neurogenesis of mNSCs, based on the mRNAs expression level of the mNSCs marker and several neuronal markers. Therefore, platforms modified with homogeneous nanohole patterns fabricated by LIL are promising for the precise tuning of nanostructures in tissue culture platforms and useful for controlling various differentiation lineages of stem cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981825 | PMC |
http://dx.doi.org/10.3390/ijms21010191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!