Erlotinib-loaded carboxymethyl temarind gum-g-poly(N-isopropylacrylamide)-montmorillonite based semi-IPN nanocomposites were synthesized and characterized for their in vitro performances for lung cancer therapy. The placebo matrices exhibited outstanding biodegradability and pH-dependent swelling profiles. The molar mass (M¯ c) between the crosslinks of these composites was declined with temperature. The solid state characterization confirmed the semi-IPN architecture of these scaffolds. The corresponding drug-loaded formulations displayed excellent drug-trapping capacity (DEE, 86-97 %) with acceptable zeta potential (-16 to -13 mV) and diameter (967-646 nm). These formulations conferred sustained drug elution profiles (Q, 77-99 %) with an initial burst release. The drug release profile of the optimized formulation (F-3) was best fitted in the first order kinetic model with Fickian diffusion driven mechanism. The mucin adsorption to F-3 followed Langmuir isotherms. The results of MTT assay, AO/EB staining and confocal analyses revealed that the ERL-loaded formulation suppressed A549 cell proliferation and induced apoptosis more effectively than pristine drug.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2019.115664 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!