Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the present work, low-cost and efficient iron oxide nanoparticle incorporated on mesoporous biochar was prepared from effluent treatment plant (ETP) sludge collected from the textile industry. This sludge contains a higher amount of Fe due to the use of ferric chloride as a coagulant in the treatment of wastewater generated during the process. The raw sludge and prepared biochar was extensively examined by various sophisticated techniques like XRF, XRD, BET, TGA, XPS, RAMAN, FTIR, FESEM, TEM, and VSM. TEM and XRD analysis confirms the presence of iron oxide nanoparticles on mesoporous biochar. The prepared biochar was found to possess BET surface area of 91 m g. Several parameters like pH, dose, initial concentration, temperature and time were optimized for the adsorptive removal of ofloxacin (OFL) from aqueous solution. Biochar (named as BTSFe) achieved ≈96% removal efficiency of OFL with a maximum adsorption capacity (q) of 19.74 mg g at optimum condition. π-π electron-donor-acceptor and H bonding were the major mechanisms responsible for the OFL adsorption. Kinetic and equilibrium thermodynamic study of showed that the adsorption of OFL was represented by the pseudo-second-order kinetics model, and the process was exothermic and spontaneous. Additionally, Redlich-Peterson and Freundlich isotherms best fitted the experimental data indicating multilayer adsorption phenomenon. Biochar was magnetically separated and thermally regenerated after each cycle for five times with a nominal overall decrease of ≈8% in removal efficiency. Leaching of iron during the adsorption process was also checked and found to be within the permissible limit. This study provides an alternative application of the textile industry sludge as an efficient, low-cost biochar for the removal of emerging pharmaceutical compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2019.113822 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!