AI Article Synopsis

  • Plastic pollution is a significant environmental issue, largely due to the breakdown of plastics into micro- and nanoplastics, which have potential toxic effects on various organisms.
  • A review of studies up to 2018 identified several factors influencing the toxicity of plastic particles, including their concentration, size, shape, and type, as well as the organism's environment and biological characteristics.
  • Common adverse effects of plastic exposure observed in studies include growth and energy metabolism issues, physiological stress, inflammation, and damage to organs, particularly in aquatic life where smaller plastic particles were found to be more harmful.

Article Abstract

Plastic pollution has become a major environmental concern due to its omnipresence and degradation to smaller particles. The potential toxicological effects of micro- and nanoplastic on biota have been investigated in a growing number of exposure studies. We have performed a comprehensive review of the main determining factors for plastic particle toxicity in the relevant exposure systems, from publications until including the year 2018. For a focused scope, effects of additives or other pollutants accumulated by the plastic particles are not included. In summary, current literature suggests that plastic particle toxicity depends on concentration, particle size, exposure time, particle condition, shape and polymer type. Furthermore, contaminant background, food availability, species, developmental stage and sex have major influence on the outcome of plastic particles exposures. Frequently reported effects were on body and population growth, energy metabolism, feeding, movement activity, physiological stress, oxidative stress, inflammation, the immune system, hormonal regulation, aberrant development, cell death, general toxicity and altered lipid metabolism. Several times reported were increased growth and food consumption, neuro-, liver- or kidney pathology and intestinal damage. Photosynthesis disruption was reported in studies investigating effects on phytoplankton. For the currently unquantified plastic particles below 10 μm, more toxic effects were reported in all aquatic life, as compared to plastic particles of larger size.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136050DOI Listing

Publication Analysis

Top Keywords

plastic particles
16
micro- nanoplastic
8
aquatic life
8
determining factors
8
factors plastic
8
plastic particle
8
particle toxicity
8
plastic
7
particles
5
effects
5

Similar Publications

This study is to produce biogenic silver nanoparticles (AgNPs) by utilizing aqueous extracts derived from Turnera Sublata (TS) leaves under visible light. Subsequently, these nanoparticles are coated with eosin-yellow (EY) to enhance sensitivity and selectivity in L-3,4-dihydroxyphenylalanine (L-dopa) detection. This method encompasses the deposition of metal onto the Ag NPs, resulting in the formation of EY-AgNPs.

View Article and Find Full Text PDF

The surge in plastic production has spurred a global crisis as plastic pollution intensifies, with microplastics and nanoplastics emerging as notable environmental threats. Due to their miniature size, these particles are ubiquitous across ecosystems and pose severe hazards as they are ingested and bioaccumulate within organisms. Although global plastic production has reached an alarming 400.

View Article and Find Full Text PDF

An increase in plastic waste and its release into the environment has led to health concerns over microplastics (MPs) in the environment. The intestinal mucosal layer is a key defense mechanism against ingested MPs, preventing the migration of particles to other parts of the body. MP migration through intestinal mucus is challenging to study due to difficulties in obtaining intact mucus layers for testing and numerous formulations, shapes, and sizes of microplastics.

View Article and Find Full Text PDF

Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.

View Article and Find Full Text PDF

This study investigates the influence of needleless versus needle-based electrospinning methods on the fiber diameter of polyamide 6 (PA6) nanofibers under comparable conditions, with an emphasis on potential pharmaceutical applications. Additionally, it examines how varying solvent systems impact fiber diameter specifically in needleless electrospinning. In this study, it was found that fibers produced by the needleless method were thicker compared to those produced by the needle-based method, a trend attributable to the specific solution characteristics and parameter settings unique to this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!