As one of the most important crops cultivated in China, rice contributes to approximately 28% of total yield. In despite of the substantial production, rice productivity is gravely affected by ongoing climate change and reduction of available water resources. Thus, assessing the responses of rice water consumption and productivity to more pronounced climate change is of great significance to water resources management in terms of relieving the resources shortage and meeting the food demand. In this study, the yield and water resources utilization during 1961-2010 in two typical rice plantation regions of China were evaluated using validated rice model ORYZA2000. Subsequently, their responses to future climate scenarios of 21 century were investigated through driving ORYZA2000 with downscaling climatic projections from GCMs under four RCPs emission scenarios. To quantify the water resources utilization in rice production from multiple perspectives, the water footprint (WF) and three water productivity indices (WP, WP and WP) were integrated for assessing the regional agricultural water stress in this paper. The results revealed that the annual average linear inclining rates of WF in two stations (Kaifeng and Kunshan) were 3.86 m/ t and 2.62 m/ t, respectively. Moreover, compared with the green water footprint (WF), the blue water footprint (WF) is projected to significantly increase in future. The water productivity (WP) would decrease in two stations under four RCPs scenarios except that the WP and WP of Kunshan under RCP2.6 and RCP4.5 scenario in 2020s, 2050s and 2080s. Hence, this study provides insights into comprehensively understand the influences of climate change on food security and sheds lights on the regional strategy for future water resource management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.136190 | DOI Listing |
Viruses
November 2024
Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy.
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000 Belgrade, Serbia.
Objectives: Although bluetongue is not a contagious disease, it is easily transmitted and spread by appropriate insect vectors, causing great economic damage. Climate change has led to the fact that vectors and diseases have spread to the top of Northern Europe, causing great economic losses in livestock production. An even greater problem is controlling the disease, because numerous species of domestic and wild ruminants are susceptible to bluetongue.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer Science, School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
Climate change caused by greenhouse gas (GHG) emissions is an escalating global issue, with the transportation sector being a significant contributor, accounting for approximately a quarter of all energy-related GHG emissions. In the transportation sector, vehicle emissions testing is a key part of ensuring compliance with environmental regulations. The Vehicle Certification Agency (VCA) of the UK plays a pivotal role in certifying vehicles for compliance with emissions and safety standards.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Informatics and Telecommunications, University of Peloponnese, Acadimaikou G.K. Vlachou, 22100 Tripolis, Greece.
The urgent need for timely and accurate precipitation estimations in the face of ongoing climate change and the increasing frequency and/or intensity of extreme weather events underscores the necessity for innovative approaches. Recently, several studies have focused on estimating the precipitation rate through induced attenuation of radio frequency (RF) signals, which are abundant in modern communication systems. Most research has concentrated on frequencies exceeding 10 GHz, as attenuation at lower frequencies is minimal, posing measurement challenges.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical and Electrical Engineering, Massey University, Auckland 0632, New Zealand.
Freshwater resources are facing increasing challenges to water quality, due to factors such as population growth, human activities, climate change, and various human-made pressures. While on-site methods, as specified in the USGS water quality sampling handbook, are usually precise, they require more time, are costly, and provide data at specific points, which lacks the essential comprehensive geographic and temporal detail for water body assessment and management. Hence, conventional on-site monitoring methods are unable to provide a complete representation of freshwater systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!