Effects of different polysaccharides and proteins on dough rheological properties, texture, structure and in vitro starch digestibility of wet sweet potato vermicelli.

Int J Biol Macromol

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.

Published: April 2020

The effects of polysaccharides (chitosan, xanthan and sodium alginate) and proteins (gluten, egg white protein) on dough rheological properties, texture, structure and in vitro starch digestibility of wet sweet potato vermicelli (SPV) were investigated. All starch doughs exhibited a linear viscoelastic region (LVR) of <0.05% strain. Chitosan, sodium alginate and xanthan incorporated dough exhibited lower maximum creep compliance and degree of dependence of G' on frequency sweep than those with egg white protein and gluten, suggesting the formation of stable network structure with stronger deformation resistance. Wet SPV with chitosan exhibited the highest tensile strength, tensile distance and cooking break time, followed by sodium alginate, xanthan, egg white protein and gluten. A mass fracture structure and evenly distributed air cells with similar pore sizes were formed in all wet SPV. Physical linkages between starch and polysaccharides or proteins in all wet SPV were confirmed by similar FTIR spectra. Xanthan and sodium alginate addition decreased the rapidly digestible starch, and increased the resistant starch in wet SPV. In conclusion, all polysaccharides and proteins can improve the quality of wet SPV, and xanthan, sodium alginate and egg white protein show greater application potential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.225DOI Listing

Publication Analysis

Top Keywords

effects polysaccharides
8
dough rheological
8
rheological properties
8
properties texture
8
texture structure
8
structure vitro
8
vitro starch
8
starch digestibility
8
digestibility wet
8
wet sweet
8

Similar Publications

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery.

View Article and Find Full Text PDF

Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.

View Article and Find Full Text PDF

In agricultural and waste management systems, dairy manure wastewater is often recycled for irrigation. However, a key challenge lies in handling suspended solids (SS) and effectively dewatering sludge. To address this, an innovative polycationic soybean protein-based flocculant (SPI+) was developed and applied to enhance flocculation and sludge dewatering efficiency.

View Article and Find Full Text PDF

Effects of in vitro simulated digestion on the hypoglycaemic capacity of wheat bran-soluble dietary fibre.

Biochem Biophys Res Commun

December 2024

College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China. Electronic address:

Wheat bran-soluble dietary fibre (WB-SDF) is known for its hypoglycaemic properties and its potential to control postprandial blood glucose levels in individuals with hyperglycaemia. However, the digestive process may alter its glucose-lowering potential. This study investigated the effects of in vitro simulated digestion on the hypoglycaemic efficacy of WB-SDF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!