A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Four-month treadmill exercise prevents the decline in spatial learning and memory abilities and the loss of spinophilin-immunoreactive puncta in the hippocampus of APP/PS1 transgenic mice. | LitMetric

Background: Previous studies have reported that exercise could improve the plasticity of hippocampal synapses. However, the effects of exercise on synapses in the hippocampus in Alzheimer's disease (AD) are not completely known.

Methods: In this study, thirty 12-month-old male APP/PS1 double transgenic mice were randomly divided into a sedentary group (n = 15) and a running group (n = 15). Fifteen 12-month-old male wild-type littermates were assigned to the control group (n = 15). While running mice were assigned to treadmill running for four months, the control mice and sedentary mice did not run during the study period. After Morris water maze testing, five mice in each group were randomly selected for a stereological assessment of spinophilin-immunoreactive puncta in the CA1, CA2-3 and dentate gyrus (DG) of the hippocampus.

Results: Morris water maze testing revealed that while the learning and memory abilities in sedentary APP/PS1 mice were significantly worse than those in wild-type control mice, the learning and memory abilities in running APP/PS1 mice were significantly better than those in sedentary APP/PS1 mice. The stereological results showed that the spinophilin-immunoreactive puncta numbers of the CA1, CA2-3 and DG in the hippocampus of sedentary APP/PS1 mice were significantly lower than those of wild-type control mice and that the numbers of these spines in the CA1, CA2-3 and DG in the hippocampus of running APP/PS1 mice were significantly higher than those of sedentary APP/PS1 mice. Moreover, a running-induced improvement in spatial learning and memory abilities was significantly correlated with running-induced increases in the spinophilin-immunoreactive puncta numbers in the CA1 and DG of the hippocampus.

Conclusions: Four-month treadmill exercise induced a significant improvement in spatial learning and memory abilities and a significant increase in the number of spinophilin-immunoreactive puncta of the CA1, CA2-3 and DG in the hippocampus of APP/PS1 mice. Running-induced improvements in spatial learning and memory abilities were significantly correlated with running-induced increases in the spinophilin-immunoreactive puncta numbers in the CA1 and DG of the hippocampus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2019.104723DOI Listing

Publication Analysis

Top Keywords

app/ps1 mice
28
learning memory
24
memory abilities
24
spinophilin-immunoreactive puncta
24
spatial learning
16
ca1 ca2-3
16
sedentary app/ps1
16
mice
15
group n = 15
12
control mice
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!