Although several studies have revealed that adverse cardiovascular events in diabetic patients are closely associated with severe hypoglycemia (SH), the causal relationship and related mechanisms remain unclear. This study aims to investigate whether SH promotes myocardial injury and further explores the potential mechanisms with focus on disturbances in lipid metabolism. SH promoted myocardial dysfunction and structural disorders in the diabetic mice but not in the controls. SH also enhanced the production of myocardial proinflammatory cytokines and oxidative stress. Moreover, myocardial lipid deposition developed in diabetic mice after SH, which was closely related to myocardial dysfunction and the inflammatory response. We further found that myocardial metabolic remodeling was associated with changes in PPAR-β/δ and its target molecules in diabetic mice exposed to SH. These findings demonstrate that SH exacerbates myocardial dysfunction and the inflammatory response in diabetic mice, which may be induced by myocardial metabolic remodeling via PPAR-β/δ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2019.110692 | DOI Listing |
Front Endocrinol (Lausanne)
December 2024
Department of Psychology, University of Miami, Coral Gables, FL, United States.
The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.
View Article and Find Full Text PDFRetinopathy of prematurity (ROP) and diabetic retinopathy (DR) are ocular disorders in which a loss of retinal vasculature leads to ischemia followed by a compensatory neovascularization response. In mice, this is modeled using oxygen-induced retinopathy (OIR), whereby neonatal animals are transiently housed under hyperoxic conditions that result in central retina vessel regression and subsequent neovascularization. Using endothelial cell (EC)-specific gene deletion, we found that loss of two ETS-family transcription factors, ERG and FLI1, led to regression of OIR-induced neovascular vessels but failed to improve visual function, suggesting that relevant retinal damage occurs prior to and independently of neovascularization.
View Article and Find Full Text PDFBackground: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.
View Article and Find Full Text PDFIntroduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.
View Article and Find Full Text PDFType 1 Diabetes Mellitus (T1D) is an autoimmune disease caused by unremitting immune attack on pancreas insulin-producing beta cells. Persistence of the autoimmune response is mediated by TCF1+ Ly108+ progenitor CD8+ T (T ) cells, a stem-like population that gives rise to exhausted effectors with limited cytolytic function in chronic virus infection and cancer. What paradoxically drives T conversion to highly cytolytic effectors in T1D, however, remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!