Increasing rates of drug-resistant Gram-negative (GN) infections, combined with a lack of new GN-effective antibiotic classes, are driving the need for the discovery of new agents. Bacterial metabolism represents an underutilized mechanism of action in current antimicrobial therapies. Therefore, we sought to identify novel antimetabolites that disrupt key metabolic pathways and explore the specific impacts of these agents on bacterial metabolism. This study describes the successful application of this approach to discover a new series of chemical probes, -(phenyl)thioacetamide-linked 1,2,3-triazoles (TAT), that target cysteine synthase A (CysK), an enzyme unique to bacteria that is positioned at a key juncture between several fundamental pathways. The TAT class was identified using a high-throughput screen against designed to identify modulators of pathways related to folate biosynthesis. TAT analog synthesis demonstrated a clear structure-activity relationship, and activity was confirmed against GN antifolate-resistant clinical isolates. Spontaneous TAT resistance mutations were tracked to CysK, and mode of action studies led to the identification of a false product formation mechanism between the CysK substrate -acetyl-l-serine and the TATs. Global transcriptional responses to TAT treatment revealed that these antimetabolites impose substantial disruption of key metabolic networks beyond cysteine biosynthesis. This study highlights the potential of antimetabolite drug discovery as a promising approach to the discovery of novel GN antibiotics and the pharmacological promise of TAT CysK probes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477787 | PMC |
http://dx.doi.org/10.1021/acsinfecdis.9b00406 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Division of Livestock Infectious Diseases, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
Historically considered to be nonenveloped, hepatitis E virus (HEV), an important zoonotic pathogen, has recently been discovered to egress from infected cells as quasi-enveloped virions. These quasi-enveloped virions circulating in the blood are resistant to neutralizing antibodies, thereby facilitating the stealthy spread of infection. Despite abundant evidence of the essential role of the HEV-encoded ORF3 protein in quasi-enveloped virus formation, the underlying mechanism remains unclear.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China.
In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
Metals have been used throughout history to manage disease. With the rising incidence of antibiotic-resistant bacterial strains, metal-based antimicrobials (MBAs) have re-emerged as an alternative to combat infections. Gallium nitrate has shown promising efficacy against several pathogens.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA. Electronic address:
Background: DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson's disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1.
View Article and Find Full Text PDFJ Nutr
January 2025
Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London. Electronic address:
This perspective discusses that the essential micronutrient zinc has functions in over 3000 human proteins (the zinc proteome), and the implications of three aspects to ascertain an adequate zinc status for human health. First, the advent of highly sensitive fluorescent (bio)chemicals revealed cellular pools of zinc ions involved in signalling and secretion from cells for paracrine, autocrine, and possibly endocrine functions. Zinc signalling adds a yet unaccounted number of targeted proteins to the already impressive number of zinc proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!