The Tetraodontidae family are known to have relatively small and compact genomes compared to other vertebrates. The obscure puffer fish Takifugu obscurus is an anadromous species that migrates to freshwater from the sea for spawning. Thus the euryhaline characteristics of T. obscurus have been investigated to gain understanding of their survival ability, osmoregulation, and other homeostatic mechanisms in both freshwater and seawater. In this study, a high quality chromosome-level reference genome for T. obscurus was constructed using long-read Pacific Biosciences (PacBio) Sequel sequencing and a Hi-C-based chromatin contact map platform. The final genome assembly of T. obscurus is 381 Mb, with a contig N50 length of 3,296 kb and longest length of 10.7 Mb, from a total of 62 Gb of raw reads generated using single-molecule real-time sequencing technology from a PacBio Sequel platform. The PacBio data were further clustered into chromosome-scale scaffolds using a Hi-C approach, resulting in a 373 Mb genome assembly with a contig N50 length of 15.2 Mb and and longest length of 28 Mb. When we directly compared the 22 longest scaffolds of T. obscurus to the 22 chromosomes of the tiger puffer Takifugu rubripes, a clear one-to-one orthologous relationship was observed between the two species, supporting the chromosome-level assembly of T. obscurus. This genome assembly can serve as a valuable genetic resource for exploring fugu-specific compact genome characteristics, and will provide essential genomic information for understanding molecular adaptations to salinity fluctuations and the evolution of osmoregulatory mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13132 | DOI Listing |
Sci Data
December 2024
Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
As molecular research on hemp (Cannabis sativa L.) continues to advance, there is a growing need for the accumulation of more diverse genome data and more accurate genome assemblies. In this study, we report the three-way assembly data of a cannabidiol (CBD)-rich cannabis variety, 'Pink Pepper' cultivar using sequencing technology: PacBio Single Molecule Real-Time (SMRT) technology, Illumina sequencing technology, and Oxford Nanopore Technology (ONT).
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.
Background: Isodon lophanthodies is a perennial herb and the whole plant has medicinal value distributed in southern China and southeast Asia. The absence of a reference genome has hindered evolution and genomic breeding research of this species.
Results: In this study, we present a high-quality, chromosome-level genome assembly of I.
Sci Data
December 2024
Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
Persicaria tinctoria (2n = 40) is an important traditional medicinal plant and natural dye source within the genus Persicaria. P. tinctoria has been utilized for its antibacterial, antiviral, anti-inflammatory, and tumor treatment properties.
View Article and Find Full Text PDFSci Data
December 2024
Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China.
The evolutionary origins of specialized organs pose significant challenges for empirical studies, as most such organs evolved millions of years ago. The Northern snakehead (Channa argus), an air-breathing fish, possesses a suprabranchial organ, a common feature of the Anabantoidei, offering a unique opportunity to investigate the function and evolutionary origins of specialized organs. In this study, a high-quality chromosome-level reference genome of C.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!