Characterization of microstructures and reaction mechanisms of Tröger's base polymers of intrinsic microporosity.

Rapid Commun Mass Spectrom

Core R&D, The Dow Chemical Company, 220 Abner Jackson Pkwy, Edgar C. Britton Building, 1B141, Lake Jackson, TX, 77566, USA.

Published: August 2020

Rationale: Tröger's base polymers of intrinsic microporosity (PIMs) are receiving increasing attention for applications such as polymer molecular sieve membranes. Development of novel membrane materials requires microstructure analysis in order to overcome processing and applications challenges. This study aims to address these challenges and overcome some of the solubility/aggregation issues that hinder the analysis of these materials.

Methods: A combination of matrix-assisted laser desorption/ionization mass spectrometry and collision-induced dissociation was used to examine the reaction products of unfunctionalized Tröger's base PIMs.

Results: Enhanced data mining, using ultrahigh-resolution mass spectrometry and statistical analysis, yielded a wealth of information on the molecular mass, chemical connectivity, and end groups of species generated during synthesis. Modifications of interest include N-methyl, N-methanimine, N-formyl, and N-methylol end-capping moieties, as well as incomplete backbone methanodiazocine rings with missing bridging methylene linkages. Most importantly, a general fragmentation mechanism, supported by computational modeling, was developed to assist in the rapid identification of main-chain and end-group modifications in Tröger's base PIMs.

Conclusions: Unfunctionalized Tröger's base polymers were selected as a model system, to thoroughly study their end-group modification chemistry. This model system could then be used to gain insights into complex hydroxy-functional PIM materials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.8713DOI Listing

Publication Analysis

Top Keywords

tröger's base
20
base polymers
12
polymers intrinsic
8
intrinsic microporosity
8
mass spectrometry
8
unfunctionalized tröger's
8
model system
8
tröger's
5
base
5
characterization microstructures
4

Similar Publications

Adolescence is a vulnerable period for the onset of mental disorders and risk behaviours. Based on the Health-Promoting Schools Framework, whole-school interventions offer a promising strategy in this developmentally-sensitive cohort, through championing a systems-based approach to promotion and prevention that involves the key stakeholders in an adolescent's life. The evidence-base surrounding the effectiveness of whole-school interventions, however, remains inconclusive, partly due to the insufficient number of studies in previous meta-analyses.

View Article and Find Full Text PDF

A novel aerobic marine bacterium, FRT2, isolated from surface water of a fishing port in Fukui, Japan, was characterised based on phylogenomic and phylogenetic analyses combined with classical phenotypic and chemotaxonomic characterisations. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FRT2 clustered with genus Leeuwenhoekiella. Closest relatives of FRT2 were Leeuwenhoekiella palythoae KMM 6264 and Leeuwenhoekiella nanhaiensis G18 with 16S rRNA gene sequence identities of 95.

View Article and Find Full Text PDF

Construction of Sub-nano Channels of Amino Pillar[6]arene Inspired Biomimetic Porous Roots for Specific Remove of Imazamox.

Chemistry

January 2025

State Key Laboratory of NBC Protection for Civilian, State Key Laboratory of NBC Protection for Civilian,, Beijing, CHINA.

The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.

View Article and Find Full Text PDF

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

Post-transcriptional regulation of aromatic amino acid metabolism by GcvB small RNA in .

Microbiol Spectr

January 2025

Department of Infection Biology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan.

synthesizes aromatic amino acids (AAAs) through the common pathway to produce the precursor, chorismate, and the three terminal pathways to convert chorismate into Phe, Tyr, and Trp. also imports exogenous AAAs through five transporters. GcvB small RNA post-transcriptionally regulates more than 50 genes involved in amino acid uptake and biosynthesis in , but the full extent of GcvB regulon is still underestimated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!