Astrogliosis has a very dynamic response during the progression of spinal cord injury, with beneficial or detrimental effects on recovery. It is therefore important to develop strategies to target activated astrocytes and their harmful molecular mechanisms so as to promote a protective environment to counteract the progression of the secondary injury. The challenge is to formulate an effective therapy with maximum protective effects, but reduced side effects. In this study, a functionalized nanogel-based nanovector was selectively internalized in activated mouse or human astrocytes. Rolipram, an anti-inflammatory drug, when administered by these nanovectors limited the inflammatory response in A1 astrocytes, reducing iNOS and Lcn2, which in turn reverses the toxic effect of proinflammatory astrocytes on motor neurons , showing advantages over conventionally administered anti-inflammatory therapy. When tested acutely in a spinal cord injury mouse model, it improved motor performance, but only in the early stage after injury, reducing the astrocytosis and preserving neuronal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b05579DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
cord injury
12
astrocytes
5
injury
5
selective modulation
4
modulation astrocytes
4
astrocytes drug-loaded
4
drug-loaded nano-structured
4
nano-structured gel
4
gel spinal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!