The Weberian apparatus, a diagnostic feature of otophysan fishes, is a novel hearing adaptation integrating several developmental and morphological systems (ear-vertebral column-swim bladder). Otophysan fishes are one of the largest and most successful freshwater clades, with over 10,000 species across most continents. The largest otophysan order, Cypriniformes, dominates the freshwaters of Asia, Europe, North America, and Africa. Spanning such a wide variety of environments, the Weberian apparatus undergoes morphological modifications to maintain functionality. Within Cypriniformes, we propose three distinct morphological classes of the Weberian apparatus based on the level of skeletal expansion around the swim bladder: simple (typical of most Cyprinidae), anterior plate (found in families such as Gyrinocheilidae, Catostomidae, and Botiidae), and encapsulated (either single-capsule as found, e.g., in Gobionidae and Cobitidae, or double-capsule as found, e.g., in Nemacheilidae and Balitoridae). Little ontological or comparative data exists regarding the construction or integration of these different morphologies, and less is known about the tissue level integration and variation within these morphologies. We used paraffin histology to document the hard and soft tissue anatomy of the Weberian apparatus in six species representing all morphological classes. We found sites of similarity across the morphologies including size and structure of the saccule, aspects of ossicle ossification, and swim bladder tunica composition, indicating potential sites of developmental and functional constraint. In contrast, we found differences across both auditory and nonauditory features in otic chamber size, ossification within ossicles and other vertebral elements, and composition of ligaments, indicating likely sites of adaptability. Some of these changes are likely evolutionary (taxonomic), but may be influenced by the environmental niche occupied by the clade. These results show a clear need for increased ontological and comparative study of the complete cypriniform Weberian apparatus, particularly histologically, as well as increased auditory studies across morphological types.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.21097DOI Listing

Publication Analysis

Top Keywords

weberian apparatus
24
cypriniform weberian
8
otophysan fishes
8
morphological classes
8
swim bladder
8
ontological comparative
8
weberian
6
apparatus
6
morphological
5
histology structural
4

Similar Publications

The Weberian apparatus is a hearing specialization unique to the otophysan fishes, and an unexpected degree of morphological variation exists in species of the Noturus catfishes. Our aim in this study is to investigate relationships between morphological variations and ecology that may drive this variation. Sampling 48 specimens representing 25 species, we investigated morphological diversity and accounted for ecological variables using landmark-based 3D geometric morphometrics and x-ray-based computed tomography (CT) images.

View Article and Find Full Text PDF

The Weberian apparatus is a novel hearing adaptation that facilitates increased hearing sensitivity in otophysan fishes. The apparatus is a complex system composed of modifications to anterior vertebral elements, the inner ear, and the swim bladder. A critical piece of the system that often receives minor attention are the various ligaments that bridge these three regions.

View Article and Find Full Text PDF

Finite element modelling of sound transmission in the Weberian apparatus of zebrafish ().

J R Soc Interface

January 2024

Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.

Zebrafish, an essential vertebrate model, has greatly expanded our understanding of hearing. However, one area that remains unexplored is the biomechanics of the Weberian apparatus, crucial for sound conduction and perception. Using micro-computed tomography (μCT) bioimaging, we created three-dimensional finite element models of the zebrafish Weberian ossicles.

View Article and Find Full Text PDF

Detailed histological analyses are desirable for zebrafish mutants that are models for human skeletal diseases, but traditional histological techniques are limited to two-dimensional thin sections with orientations highly dependent on careful sample preparation. On the other hand, techniques that provide three-dimensional (3D) datasets including µCT scanning are typically limited to visualizing the bony skeleton and lack histological resolution. We combined diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRµCT) to image late larval and juvenile zebrafish, obtaining high-quality 3D virtual histology datasets of the mineralized skeleton and surrounding soft tissues.

View Article and Find Full Text PDF

The four described species of Danionella are tiny, transparent fishes that mature at sizes between 10-15 mm, and represent some of the most extreme cases of vertebrate progenesis known to date. The miniature adult size and larval appearance of Danionella, combined with a diverse behavioral repertoire linked to sound production by males, have established Danionella as an important model for neurophysiological studies. The external similarity between the different species of Danionella has offered an important challenge to taxonomic identification using traditional external characters, leading to confusion over the identity of the model species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!