Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Limitations of capacitive deionization (CDI) and future commercialization efforts are intrinsically bound to electrode stability. In this work, thermal treatments are explored to understand their ability to regenerate aged CDI electrodes. We demonstrate that a relatively low thermal treatment temperature of ∼500 °C can sufficiently recover the lost salt adsorption capacity of degraded electrodes. Furthermore, a systematic study of electrode replacement clarifies that the desalination ability loss and regeneration for a CDI cell are isolated to the aged anode, as expected. Characterizations of surface functionalities support that the acidic oxygen-containing functional groups formed in situ during cycling undergo thermal decomposition during treatment. The modified Donnan model quantitatively confirms that the surface charges originate from the formation/decomposition of functional groups. Accordingly, the lost pore volume and the increased resistance are recovered during thermal treatments, while the surface morphologies and pore structure of the electrodes are well-preserved. Therefore, thermal treatment can be applied practically to extend the lifetime of aged electrodes. This study also offers insights into strategies for minimizing electrode degradation or in situ regeneration such that the technology gains momentum for future commercialization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b04749 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!