Utilization of high-capacity alloying anodes is a promising yet extremely challenging strategy in building high energy density alkali-ion batteries (AIBs). Excitingly, it was very recently found that the (de-)sodiation of tin (Sn) can be a highly reversible process in specific glyme electrolytes, enabling high specific capacities close to the theoretical value of 847 mA h g. The unique solid electrolyte interphase (SEI) formed on Sn electrodes, which allows highly reversible sodiation regardless of the huge volume expansion, is herein demonstrated according to a series of in situ and ex situ characterization techniques. The SEI formation process mainly involves NaPF decomposition and the polymerization/oligomerization of the glyme solvent, which is induced by the catalytic effect of tin, specifically. This work provides a paradigm showing how solvent, salt, and electrode materials synergistically mediate the SEI formation process and obtains new insights into the unique interfacial chemistry between Na-alloying electrodes and glyme electrolytes, which is highly enlightening in building high energy density AIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b20616DOI Listing

Publication Analysis

Top Keywords

highly reversible
12
glyme electrolytes
12
reversible sodiation
8
solid electrolyte
8
electrolyte interphase
8
building high
8
high energy
8
energy density
8
sei formation
8
formation process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!