Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brain-derived neurotrophic factor (BDNF) signaling plays a major role in the regulation of hippocampal neurogenesis in the adult brain. While the majority of studies suggest that this is due to its effect on the survival and differentiation of newborn neurons, it remains unclear whether this signaling directly regulates neural precursor cell (NPC) activity and which of its two receptors, TrkB or the p75 neurotrophin receptor (p75 ) mediates this effect. Here, we examined both the RNA and protein expression of these receptors and found that TrkB but not p75 receptors are expressed by hippocampal NPCs in the adult mouse brain. Using a clonal neurosphere assay, we demonstrate that pharmacological blockade of TrkB receptors directly activates a distinct subpopulation of NPCs. Moreover, we show that administration of ANA-12, a TrkB-selective antagonist, in vivo either by systemic intraperitoneal injection or by direct infusion within the hippocampus leads to an increase in the production of new neurons. In contrast, we found that NPC-specific knockout of p75 had no effect on the proliferation of NPCs and did not alter neurogenesis in the adult hippocampus. Collectively, these results demonstrate a novel role of TrkB receptors in directly regulating the activity of a subset of hippocampal NPCs and suggest that the transient blockade of these receptors could be used to enhance adult hippocampal neurogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dneu.22729 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!