Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Crystallography is the powerhouse technique for molecular structure determination, with applications in fields ranging from energy storage to drug design. Accurate structure determination, however, relies partly on determining the precise locations and integrated intensities of Bragg peaks in the resulting data. Here, we describe a method for Bragg peak integration that is accomplished using neural networks. The network is based on a U-Net and identifies peaks in three-dimensional reciprocal space through segmentation, allowing prediction of the full 3D peak shape from noisy data that is commonly difficult to process. The procedure for generating appropriate training sets is detailed. Trained networks achieve Dice coefficients of 0.82 and mean IoUs of 0.69. Carrying out integration over entire datasets, it is demonstrated that integrating neural network-predicted peaks results in improved intensity statistics. Furthermore, using a second dataset, the possibility of transfer learning between datasets is shown. Given the ubiquity and growing complexity of crystallography, we anticipate integration by machine learning to play an increasingly important role across the physical sciences. These early results demonstrate the applicability of deep learning techniques for integrating crystallography data and suggest a possible role in the next generation of crystallography experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934264 | PMC |
http://dx.doi.org/10.1109/CCGRID.2019.00070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!