Parkinson's disease has multiple detrimental effects on motor and cognitive systems in the brain. In contrast to motor deficits, cognitive impairments in Parkinson's disease are usually not ameliorated, and can even be worsened, by dopaminergic treatments. Recent evidence has shown potential benefits from restoring other neurotransmitter deficits, including noradrenergic and serotonergic transmission. Here, we study global and regional brain network organization using task-free imaging (also known as resting-state), which minimizes performance confounds and the bias towards predetermined networks. Thirty-three patients with idiopathic Parkinson's disease were studied three times in a double-blinded, placebo-controlled counter-balanced crossover design, following placebo, 40 mg oral atomoxetine (selective noradrenaline reuptake inhibitor) or 30 mg oral citalopram (selective serotonin reuptake inhibitor). Neuropsychological assessments were performed outside the scanner. Seventy-six controls were scanned without medication to provide normative data for comparison to the patient cohort. Graph theoretical analysis of task-free brain connectivity, with a random 500-node parcellation, was used to measure the effect of disease in placebo-treated state (versus unmedicated controls) and pharmacological intervention (drug versus placebo). Relative to controls, patients on placebo had executive impairments (reduced fluency and inhibitory control), which was reflected in dysfunctional network dynamics in terms of reduced clustering coefficient, hub degree and hub centrality. In patients, atomoxetine improved fluency in proportion to plasma concentration ( = 0.006,  = 0.24), and improved response inhibition in proportion to increased hub Eigen centrality ( = 0.044,  = 0.14). Citalopram did not improve fluency or inhibitory control, but its influence on network integration and efficiency depended on disease severity: clustering ( = 0.01,  = 0.22), modularity ( = 0.043,  = 0.14) and path length ( = 0.006,  = 0.25) increased in patients with milder forms of Parkinson's disease, but decreased in patients with more advanced disease (Unified Parkinson's Disease Rating Scale motor subscale part III > 30). This study supports the use of task-free imaging of brain networks in translational pharmacology of neurodegenerative disorders. We propose that hub connectivity contributes to cognitive performance in Parkinson's disease, and that noradrenergic treatment strategies can partially restore the neural systems supporting executive function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924537PMC
http://dx.doi.org/10.1093/braincomms/fcz013DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
28
disease
10
brain network
8
network organization
8
task-free imaging
8
reuptake inhibitor
8
fluency inhibitory
8
inhibitory control
8
parkinson's
7
brain
5

Similar Publications

Choline is an essential micronutrient critical for cellular and organismal homeostasis. As a core component of phospholipids and sphingolipids, it is indispensable for membrane architecture and function. Additionally, choline is a precursor for acetylcholine, a key neurotransmitter, and betaine, a methyl donor important for epigenetic regulation.

View Article and Find Full Text PDF

Microglia depletion reduces neurodegeneration and remodels extracellular matrix in a mouse Parkinson's disease model triggered by α-synuclein overexpression.

NPJ Parkinsons Dis

January 2025

Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.

Chronic neuroinflammation with sustained microglial activation occurs in Parkinson's disease (PD), yet the mechanisms and exact contribution of these cells to the neurodegeneration remains poorly understood. In this study, we induced progressive dopaminergic neuron loss in mice via rAAV-hSYN injection to cause the neuronal expression of α-synuclein, which produced neuroinflammation and behavioral alterations. We administered PLX5622, a colony-stimulating factor 1 receptor inhibitor, for 3 weeks prior to rAAV-hSYN injection, maintaining it for 8 weeks to eliminate microglia.

View Article and Find Full Text PDF

Prodromal Parkinson's disease and subsequent risk of Parkinson's disease and mortality.

NPJ Parkinsons Dis

January 2025

Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, China.

Association of prodromal Parkinson's disease (PD) with risk of PD and risk of mortality in individuals with PD warrant investigation through large-scale prospective study. We included 501,475 participants without PD at baseline. Eight prodromal features were measured.

View Article and Find Full Text PDF

The risk of Parkinson's disease (PD) associated with farming has received considerable attention, in particular for pesticide exposure. However, data on PD risk associated with specific farming activities is lacking. We aimed to explore whether specific farming activities exhibited a higher risk of PD than others among the entire French farm manager (FM) population.

View Article and Find Full Text PDF

Background And Purpose: Parkinson's disease (PD) is characterized by various prodromal symptoms, and these symptoms are mostly investigated retrospectively. While some symptoms such as rapid eye movement sleep behavior disorder are highly specific, others are common. This makes it challenging to predict those at risk of PD based solely on less-specific prodromal symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!