Remote sensing of vegetation provides important information for ecological applications and environmental assessments. The association between vegetation composition and structure with its spectral signal can most fully be assessed with hyperspectral data. Particularly field spectroscopy data can improve such understanding as the spectral data can be linked with the vegetation under consideration without the geographic registration uncertainties of aerial or satellite imagery. The data provided in this article contain field spectroscopy measurements from non-arable, grass-dominated objects on four farms in an intensively used agricultural landscape in the South-East of the UK. Detailed data on the plant species composition of the objects are also supplied with this article to support further analysis. Reuse potential includes linking the vegetation data with the spectral response using spectral unmixing techniques to map certain plant species or including the field spectroscopy data in a larger study with data from a wider area. This data article is related to the paper 'Classifying grass-dominated habitats from remotely sensed data: the influence of spectral resolution, acquisition time and the vegetation classification system on accuracy and thematic resolution' (Bradter et al., 2019) in which the ability to classify the recorded vegetation from the field spectroscopy data was analysed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920490PMC
http://dx.doi.org/10.1016/j.dib.2019.104888DOI Listing

Publication Analysis

Top Keywords

field spectroscopy
20
spectroscopy data
16
data
12
non-arable grass-dominated
8
grass-dominated objects
8
intensively agricultural
8
agricultural landscape
8
plant species
8
vegetation
6
field
5

Similar Publications

Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.

View Article and Find Full Text PDF

The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.

View Article and Find Full Text PDF

Luliconazole (LCZ) is a topical imidazole antifungal agent with broad-spectrum activity. However, LCZ encounters challenges such as low aqueous solubility, skin retention, and penetration, which reduce its dermal bioavailability and hinder its efficacy in drug delivery. The aim of the present study was to formulate, characterize, and evaluate the in vitro antifungal efficacy of luliconazole-loaded nanostructured lipid carriers (LCZ-NLCs) against a panel of resistant fungal strains.

View Article and Find Full Text PDF

The effects of dairy sterilization techniques (65 °C/30 min, 72 °C/15 s, 85 °C/15 s, 100 °C/5 min, and 121 °C/5 s) on the epigallocatechin-3-gallate-casein (EGCG-CS) complexes were investigated through the structural and functional characteristics in this work. Fourier transform infrared spectroscopy (FT-IR) detection showed the redshirting of the absorption peak suggested structural changes in the amide I area. Field emission scanning electron microscopy (FESEM) and viscosity measurements proved that treatments above 85 °C broke non-covalent bonds, leading to instability and low viscosity of EGCG-CS.

View Article and Find Full Text PDF

There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!