The biodiesel production from waste cooking oil in this data collection process was focused on the utilization of the heterogeneous catalyst of CaO/silica. The CaO was obtained from eggshell after preparation process and the silica was successfully extracted from peat clay using sodium hydroxide with various molarities. The CaO/silica catalyst was formed by the impregnation of the CaO catalyst on the support of silica. The FTIR, SEM and XRD characterization for the various formed catalysts were presented. The generated catalysts were further used for the production of biodiesel. The GCMS chromatogram with the type of methyl esters for each data was presented. The data presented here are related to the previous research article [1].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920476 | PMC |
http://dx.doi.org/10.1016/j.dib.2019.104879 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
The upgrading of ethanol to -butanol marks a major breakthrough in the field of biofuel technology, offering the advantages of compatibility with existing infrastructure while simultaneously offering potential benefits in terms of transport efficiency and energy density. With its lower vapour pressure and reduced corrosiveness compared to ethanol, -butanol is easier not only to manage but also to transport, eliminating the need for costly infrastructure changes. This leads to improved fuel efficiency and reduced fuel consumption.
View Article and Find Full Text PDFBiofuels derived from renewable and sustainable lignocellulosic biomass, such as switchgrass, offer a promising means to limit greenhouse gas emissions. However, switchgrass grown under drought conditions contains high levels of chemical compounds that inhibit microbial conversion to biofuels. Fermentation of drought switchgrass hydrolysates by engineered and generates less ethanol than fermentation of hydrolyzed switchgrass from an average rainfall year.
View Article and Find Full Text PDFACS Omega
January 2025
Institute of Chemistry, UFU, Federal University of Uberlândia, Uberlândia, Minas Gerais 38400-902, Brazil.
Synthetic antioxidants are often introduced to biodiesel to increase its oxidative stability, and -butyl hydroquinone (TBHQ) has been selected due to its high efficiency for this purpose. The monitoring of antioxidants in biodiesel therefore provides information on the oxidative stability of biodiesels. Herein, a laser-induced graphene (LIG) electrode is introduced as a new sensor for detecting -butyl hydroquinone (TBHQ) in biodiesel samples.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Background: Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Aquaculture Department, Faculty of Fisheries, Ege University, 35040, Izmir, Türkiye.
For biofuels and nutraceuticals, the green microalga Haematococcus pluvialis (Chlorophyceae) is a prospective source of biomass and lipids. This study examined how biomass production and lipid accumulation were affected by temperature (10 °C, 20 °C, and 30 °C) and potassium nitrate (KNO₃) concentrations (0.41 g/L, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!