AI Article Synopsis

  • - The study focuses on a new mathematical approach called a three-dimensional pulse image (3DPI) to analyze heartbeats, moving beyond the traditional one-dimensional pulse wave.
  • - Researchers used Fourier series to evaluate the spatial and temporal features of 3DPIs, generating a sequence of ratios from 70 heartbeats sampled from 24 participants.
  • - Findings indicate significant differences in various types of 3DPIs when looking at harmonic ratios, suggesting that this method can enhance our understanding of pulse characteristics, particularly in the context of Chinese medicine.

Article Abstract

In this article, a three-dimensional pulse image (3DPI) instead of a one-dimensional temporal pulse wave is studied to elucidate its spatiotemporal characteristics. To check the spatial and temporal properties of 3DPI, adopted is Fourier series, in which a ratio () is defined as one amplitude divided by the sum of the first three amplitudes of harmonics. A ratio sequence is constituted from 70 to 90 ratios in a heartbeat with 70-90 3DPIs by sampling. Twenty-four subjects (14 males and 10 females with age of 22.2 ± 3.7 years, 20.4 ± 1.4 BMI, and 112.1 ± 4.7 mmHg systolic blood pressure) are involved in this research. There are significant statistical differences in the groups of the normal, taut, and slippery 3DPIs by the first harmonic ratio average ( ) and ratio difference (Δ ) produced from the ratio sequence. The proposed method of this study gives us a novel viewpoint to clarify the spatiotemporal characteristics of pulse images, which can translate and quantize the pulse feeling in Chinese medicine texts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900951PMC
http://dx.doi.org/10.1155/2019/5734018DOI Listing

Publication Analysis

Top Keywords

fourier series
8
normal taut
8
taut slippery
8
pulse images
8
spatiotemporal characteristics
8
ratio sequence
8
pulse
6
ratio
5
series analysis
4
analysis novel
4

Similar Publications

This study introduces the development of a highly sensitive label-free electrochemical immunosensor specifically designed to detect prostate-specific antigen (PSA). A glassy carbon electrode (GCE) coated with Au nanoparticles/polyhedral hollow CoCu bimetallic sulfide (CuCoS) was employed as a sensing interface for the fixation of the monoclonal anti-PSA antibody. The nanoarchitectures enhanced the capacity for loading prostate-specific antibodies (Ab) and effectually boosted electrical conductivity leading to enhance the electrochemical signal and greater sensitivity for the detection of PSA.

View Article and Find Full Text PDF

Chemometrics-powered spectroscopic techniques for the measurement of food-derived phenolics and vitamins in foods: A review.

Food Chem

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China. Electronic address:

Foods are rich in various bioactive compounds, like phenolics, and vitamins, which play important physiological roles in the human body. The analysis of phenolics and vitamins in plant and animal-based foods is a topic of growing interest. Compared with conventional methods, the chemometrics-powered infrared, Fourier transform-near infrared and mid-infrared, ultraviolet-visible, fluorescence, and Raman spectroscopy offer a reliable, low-cost, and nondestructive means to determine phenolics and vitamins.

View Article and Find Full Text PDF

Azurin, a bacterial blue-copper protein, has garnered significant attention as a potential anticancer drug in recent years. Among twenty Pseudomonas aeruginosa isolates, we identified one isolate that demonstrated potent and remarkable azurin synthesis using the VITEK 2 system and 16S rRNA sequencing. The presence of the azurin gene was confirmed in the genomic DNA using specific oligonucleotide primers, and azurin expression was also detected in the synthesized cDNA, which revealed that the azurin expression is active.

View Article and Find Full Text PDF

Investigating chemical changes, material properties, and off-gas emissions in sewage sludge through thermal plasma treatment.

J Environ Manage

January 2025

Laboratório de Plasmas e Processos - LPP, Instituto Tecnológico de Aeronáutica - ITA/DCTA, São José dos Campos, SP, Brazil.

This study aimed to investigate the thermal plasma treatment of sewage sludge as an alternative waste management solution. Samples were collected from a sewage treatment facility in São Paulo, Brazil, and subjected to thermal treatments in a furnace at temperatures of 400, 600, 800, and 900 °C to assess moisture content, mass loss, and ash composition. Subsequently, the samples were processed in a thermal plasma reactor operating at an average power of 30 kW.

View Article and Find Full Text PDF

Development of morphology-dependent nanoselenium carriers for enhancing biological activity and reducing plant stress.

Ecotoxicol Environ Saf

January 2025

Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China. Electronic address:

Owing to their small size, morphology and release modification properties, nanopesticides are considered promising alternative strategies for enhancing biological activity and minimizing pesticide losses. In this study, we used a colloidal self-assembly method to develop a morphology-stable, regularly rod-shaped nanoselenium pesticide carrier (NSer), which was further modified with chitosan. After loading penthiopyrad (PEN), the biological activity of NSer@PEN and its impact on the physiological and biochemical processes of plants were further compared with those of spherical nanoselenium pesticides (NSes@PEN) and commercial materials (20 % PEN SC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!