A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Contribution of snowfall from diverse synoptic conditions in the Catskill/Delaware Watershed of New York State. | LitMetric

Snowfall in the six basins of the Catskill/Delaware Watershed in south-central New York State historically contributes roughly 20-30% of the water resources derived from the watershed for use in the New York City water supply. The watershed regularly experiences snowfall from three distinctive weather patterns: coastal mid-latitude cyclones, overrunning systems, and lake-effect or Great Lakes enhanced storms. Using synoptic weather classification techniques, these distinct regional atmospheric patterns impacting the watershed are isolated and analysed in conjunction with daily snowfall observations from 1960 to 2009 to allow the influence of each synoptic weather pattern on snowfall to be evaluated independently. Results indicate that snowfall-producing events occur on average approximately 63 days/year, or once every 4 days during the October-May season, leading to an average of 213 cm/year of snowfall within the watershed. Snowfall from Great Lakes enhanced storms and overrunning systems contribute nearly equally to seasonal totals, representing 38 and 39%, respectively. Coastal mid-latitude cyclones, while producing the highest amount of snowfall per event on average, contribute only 16% to the watershed average total snowfall. Predicted climate change is expected to impact snowfall differently depending on the specific atmospheric pattern producing the snow. As such, quantifying the contribution of snowfall to the watershed by synoptic pattern can inform future water management and reservoir operation practices for the New York City Water Supply Management System.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921276PMC
http://dx.doi.org/10.1002/joc.6043DOI Listing

Publication Analysis

Top Keywords

snowfall
10
contribution snowfall
8
watershed
8
catskill/delaware watershed
8
watershed york
8
york state
8
york city
8
city water
8
water supply
8
coastal mid-latitude
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!