Disulfide bonds between cysteine residues are commonly involved in the stability of numerous peptides and proteins and are crucial for providing biological activities. In such peptides, the appropriate cysteine connectivity ensures the proper conformation allowing an efficient binding to their molecular targets. Disulfide bond connectivity characterization is still challenging and is a critical issue in the analysis of structured peptides/proteins targeting pharmaceutical or pharmacological utilizations. This study describes the development of new and fast gas-phase and in-solution electrophoretic methods coupled to mass spectrometry to characterize the cysteine connectivity of disulfide bonds. For this purpose, disulfide isomers of three peptides bearing two intramolecular disulfide bonds but different cysteine connectivity have been investigated. Capillary zone electrophoresis and ion mobility both coupled to mass spectrometry were used to perform the separation in both aqueous and gas phases, respectively. The separation efficiency of each technique has been critically evaluated and compared. Finally, theoretical calculations were performed to support and explain the experimental data based on the predicted physicochemical properties of the different peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b03206DOI Listing

Publication Analysis

Top Keywords

cysteine connectivity
16
disulfide bonds
16
capillary zone
8
theoretical calculations
8
peptides bearing
8
bearing intramolecular
8
intramolecular disulfide
8
bonds cysteine
8
coupled mass
8
mass spectrometry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!