Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The addition of Ag nanoparticles (Ag NPs) with an average size of 30 nm into ZnO increases the electric conductivity up to 1000 times. While a similar increase in the conductivity is observed in a mixture of Ag nanoparticles and Al-doped ZnO (AZO) films, a physical mechanism underlying the change in electric conductivity is not the same for Ag NP-added ZnO and Ag NP-added AZO. In Ag NP-added ZnO, an ohmic junction is formed at the ZnO-Ag interface, and electrons are accumulated in ZnO near the ZnO-Ag interface until electron-rich islands are connected. However, in Ag NP-added AZO, electrons in Ag NPs move to the AZO matrix via thermionic emission and travel through the AZO matrix. This change in electron transport at ZnO-Ag and AZO-Ag interfaces is due to the fact that the work function of ZnO (4.62 eV) is larger than those of Ag (4.24 eV) and AZO (4.15 eV). An increase in Ag NP content in the ZnO matrix leads to the overlap of the electron accumulation regions and forms a percolation path for the electron transport without deteriorating the electron mobility. Hence, the electron concentration increases to 2.4 × 10/cm in the 1.4 vol % Ag NP-added ZnO film. In addition, Ag NPs have a negligible effect on the transmittance, and the best Haacke figure of merit (Φ) values are 2.86 and 5.18 for ZnO:Ag NP and AZO:Ag NP, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b17922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!