We demonstrate the possibility of measuring FRET efficiency with a low-cost frequency-domain fluorescence lifetime imaging microscope (FD-FLIM). The system utilizes single-frequency-modulated excitation, which enables the use of cost-effective laser sources and electronics, simplification of data acquisition and analysis, and a dual-channel detection capability. Following calibration with coumarin 6, we measured the apparent donor lifetime in mTFP1-mVenus FRET standards expressed in living cells. We evaluated the system's sensitivity by differentiating the short and long lifetimes of mTFP1 corresponding to the known standards' high and low FRET efficiency, respectively. Furthermore, we show that the lifetime of the vinculin tension sensor, VinTS, at focal adhesions (2.30  ±  0.16  ns) is significantly (p  <  ) longer than the lifetime of the unloaded TSMod probe (2.02  ±  0.16  ns). The pixel dwell time was 6.8  μs for samples expressing the FRET standards, with signal typically an order of magnitude higher than VinTS. The apparent FRET efficiency () of the standards, calculated from the measured apparent lifetime, was linearly related to their known FRET efficiency by a factor of 0.92 to 0.99 (  =  0.98). This relationship serves as a calibration curve to convert apparent FRET to true FRET and circumvent the need to measure multiexponential lifetime decays. This approach yielded a FRET efficiency of 18% to 19.5%, for VinTS, in agreement with published values. Taken together, our results demonstrate a cost-effective, fast, and sensitive FD-FLIM approach with the potential to facilitate applications of FLIM in mechanobiology and FRET-based biosensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6935677PMC
http://dx.doi.org/10.1117/1.JBO.24.12.126501DOI Listing

Publication Analysis

Top Keywords

fret efficiency
24
fret
10
low-cost frequency-domain
8
frequency-domain fluorescence
8
fluorescence lifetime
8
lifetime imaging
8
imaging microscope
8
measured apparent
8
fret standards
8
apparent fret
8

Similar Publications

Plasmonic Ag/PMMA/Eu nanocomposite for sensitive dual mode detection of malachite green.

Biomed Opt Express

January 2025

School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.

Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.

View Article and Find Full Text PDF

Optimization of FRET imaging in Arabidopsis Protoplasts.

Mol Cells

January 2025

Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Institute of Systems Biology, Pusan National University, Busan 46241, Republic Korea. Electronic address:

Recent advancements in fluorescence-based biosensor technologies have enabled more precise and accurate Förster Resonance Energy Transfer (FRET) imaging within Agrobacterium-mediated plant transformation systems. However, the application of FRET imaging in plant tissues remains hindered by significant challenges, particularly the time-intensive process of generating transgenic lines and the complications arising from tissue autofluorescence. In contrast, protoplast-based FRET imaging offers a rapid and efficient platform for functional screening and analysis, making it an essential tool for plant research.

View Article and Find Full Text PDF

Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.

View Article and Find Full Text PDF

Quantitative Analysis of the Effect of Fluorescent Labels on DNA Strand Displacement Reaction.

Micromachines (Basel)

November 2024

Department of Intelligent and Control Systems, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan.

DNA chemical reaction networks can perform complex information processing through careful design of reaction kinetics, which involves the reaction network structure, rate constants, and initial concentrations. The toehold-mediated strand displacement reaction (TMSDR) is a key mechanism in creating DNA circuits, offering a rational design approach by integrating individually designed TMSDRs. Tools such as VisualDSD and NUPACK facilitate the efficient design of these systems by allowing precise tuning of reaction parameters.

View Article and Find Full Text PDF
Article Synopsis
  • FRET (Förster resonance energy transfer) is a technique used in gas-phase structural biology to analyze the structures of biological molecules like peptides and proteins by using donor and acceptor dyes.
  • The study investigates how different amino acid (AA) methyl esters connected to a rhodamine dye affect energy transfer, employing cryogenic ion fluorescence spectroscopy for analysis.
  • Results reveal that the variation in spectral outputs stems from the conformations of the dye, which are influenced by the AA side chains, and specific angles between two aromatic components that impact energy transfer efficiency.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!