Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition Tailored for Phosphorothioate Oligonucleotides.

Curr Protoc Nucleic Acid Chem

Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden.

Published: March 2020

An efficient method for attachment of a variety of reporter groups to oligonucleotides (ONs) is copper (I) [Cu(I)]-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition ("click reaction"). However, in the case of ONs with phosphorothioate modifications as internucleosidic linkages (PS-ONs), this conjugation method has to be adjusted to be compatible with the sulfur-containing groups. The method described here is adapted for PS-ONs, utilizes solid-supported ONs, and implements the Cu(I) bromide dimethyl sulfide complex (CuBr × Me S) as a mediator for the click reaction. The solid-supported ONs can be readily transformed into "clickable ONs" by on-line addition of an alkyne-containing linker that subsequently can react with an azido-containing moiety (e.g., a peptide) in the presence of CuBr × Me S. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Conjugation on solid support Support Protocol: Removal of 4,4'-dimethoxytrityl group from amino linker Basic Protocol 2: Removal of protecting groups and cleavage from solid support Basic Protocol 3: HPLC purification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpnc.102DOI Listing

Publication Analysis

Top Keywords

basic protocol
12
13-dipolar cycloaddition
8
solid-supported ons
8
solid support
8
protocol removal
8
copper-catalyzed huisgen
4
huisgen 13-dipolar
4
cycloaddition tailored
4
tailored phosphorothioate
4
phosphorothioate oligonucleotides
4

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Amelioration of radiation-induced skin injury by tetrahydrobiopterin: preclinical study and phase II trial.

Mol Biomed

January 2025

Laboratory of Radiation Medicine, NHC Key Laboratory of Nuclear Technology Medical Transformation, School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.

View Article and Find Full Text PDF

Artificial fish nests are common tools in fisheries management, providing spawning grounds to enhance the size and diversity of fish populations. This study aimed to explore the effects of deployment locations on the reproductive efficiency and preferences of fish with adhesive and demersal eggs using artificial nests. Floating artificial nests were deployed in three regions (upstream, midstream, and downstream) of a reservoir in Zhejiang, China, at locations with three topographical types: steep slope (reservoir shore, slopes > 60°), gentle slope (reservoir shore, slopes < 30°), and confluence (middle thread of channel).

View Article and Find Full Text PDF

Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment.

Cell Death Dis

January 2025

Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.

TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!