Small Sequence-Sensitive Compounds for Specific Recognition of the G⋅C Base Pair in DNA Minor Groove.

Chemistry

Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, 50 Decatur St SE, Atlanta, GA, 30303, USA.

Published: April 2020

A series of small diamidines with thiophene and modified N-alkylbenzimidazole σ-hole module represent specific binding to single G⋅C base pair (bp) DNA sequence. The variation of N-alkyl or aromatic rings were sensitive to microstructures of the DNA minor groove. Thirteen new compounds were synthesized to test their binding affinity and selectivity. The dicyanobenzimidazoles needed to synthesize the target diamidines were made via condensation/cyclization reactions of different aldehydes with different 3-amino-4-(alkyl- or phenyl-amino) benzonitriles. The final diamidines were synthesized using lithium bis-trimethylsilylamide (LiN[Si(CH ) ] ) or Pinner methods. The newly synthesized compounds showed strong binding and selectivity to AAAGTTT compared to similar sequences AAATTT and AAAGCTTT investigated by several biophysical methods including biosensor-SPR, fluorescence spectroscopy, DNA thermal melting, ESI-MS spectrometry, circular dichroism, and molecular dynamics. The binding affinity results determined by fluorescence spectroscopy are in accordance with those obtained by biosensor-SPR. These small size single G⋅C bp highly specific binders extend the compound database for future biological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265973PMC
http://dx.doi.org/10.1002/chem.201904396DOI Listing

Publication Analysis

Top Keywords

g⋅c base
8
base pair
8
pair dna
8
dna minor
8
minor groove
8
single g⋅c
8
binding affinity
8
fluorescence spectroscopy
8
small sequence-sensitive
4
sequence-sensitive compounds
4

Similar Publications

The transcription of amtB in Streptomyces coelicolor has been proposed to be counter-regulated by GlnR (a global regulator for nitrogen metabolism) and PhoP (a global regulator for phosphate metabolism). However, the GlnR-protected region, which was deduced to be two 22-bp GlnR binding boxes (gTnAc-n6-GaAAc-n6-GtnAC-n6-GAAAc-n6, abbreviated as a1-b1 and a2-b2), was separated from the PhoP-protected region in the promoter of amtB, leaving the mechanism for this regulation undefined. In this study, another 22-bp GlnR binding box, which consisted of a3-site-n6-b3-site (a3-b3) overlapping with the PhoP-binding sequences, was identified in the promoter region of amtB by a DNase I footprinting assay.

View Article and Find Full Text PDF

B-lymphocyte-induced maturation protein1(Blimp-1) and B-cell maturation antigen (BCMA) are essential factors in the development and survival of plasma cells. However, whether Blimp-1 could regulate the expression of BCMA is unknown. We found that the BCMA promoter region did not have typical "TATA" and "CAAT" box, but contained several potential binding sites of transcription factors, including the consensus sequences for Blimp-1, located in the "-31 to -21" and "-46 to -36" from the potential transcription initiation site of the mouse BCMA gene, respectively.

View Article and Find Full Text PDF

Streptomyces coelicolor GlnR is a global regulator that controls genes involved in nitrogen metabolism. By genomic screening 10 new GlnR targets were identified, including enzymes for ammonium assimilation (glnII, gdhA), nitrite reduction (nirB), urea cleavage (ureA) and a number of biochemically uncharacterized proteins (SCO0255, SCO0888, SCO2195, SCO2400, SCO2404, SCO7155). For the GlnR regulon, a GlnR binding site which comprises the sequence gTnAc-n(6)-GaAAc-n(6)-GtnAC-n(6)-GAAAc-n(6) has been found.

View Article and Find Full Text PDF

We have previously described a Pseudomonas gene, psrA, which enhances transcription of the rpoS sigma factor gene at stationary phase. We present molecular data which demonstrate that in Pseudomonas putida PsrA binds specifically to the rpoS and psrA promoters in DNA regions having similar palindromic sequences, C/GAAAC N(2-4) GTTTG/C, where N is any nucleotide. The position of the initiation of transcription was determined for both promoters, and PsrA binds from positions -59 to -35 in the rpoS promoter and from -18 to +20 in the psrA promoter with respect to the +1 transcription site.

View Article and Find Full Text PDF

The gene encoding UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1-phosphate transferase (GPT), the enzyme that initiates the pathway for the biosynthesis of asparagine-linked glycoproteins, is ubiquitously expressed in eukaryotic cells. However, its expression in the mammary gland is developmentally and hormonally regulated; transcription of the mouse mammary GPT gene is stimulated by the lactogenic hormones, insulin, glucocorticoid, and prolactin. The involvement of cisacting elements in regulating the expression of the mouse GPT (mGPT) gene was investigated by transient transfections of various GPT promoter/luciferase (Luc) constructs into primary mouse mammary epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!