The association between age-related macular degeneration (AMD) and biological rhythms has been insufficiently studied; however there are several reasons to believe that impairment in circadian rhythm may affect incidence and pathogenesis of AMD. The current understanding of AMD pathology is based on age-related, cumulative oxidative damage to the retinal pigmented epithelium (RPE) partially due to impaired clearance of phagocytosed photoreceptor outer segments. In higher vertebrates, phagocytosis of the outer segments is synchronized by circadian rhythms and occurs shortly after dawn, followed by lysosomal-mediated clearance. Aging has been shown to be associated with the changes in circadian rhythmicity of melatonin production, which can be a major factor contributing to the impaired balance between phagocytosis and clearance and increased levels of reactive oxygen species resulting in degenerative changes in the retina. This minireview summarizes studies linking AMD with melatonin production and discusses challenges and perspectives of this area of research.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-030-27378-1_8DOI Listing

Publication Analysis

Top Keywords

circadian rhythm
8
outer segments
8
melatonin production
8
melatonin the possible
4
the possible link
4
link age-related
4
age-related retinal
4
retinal regeneration
4
regeneration the disrupted
4
circadian
4

Similar Publications

Regulation of circadian gene activity in fibroblasts from ADHD patients through Rosiglitazone: a pilot study.

J Neural Transm (Vienna)

January 2025

Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, Essen University Medical School, University of Duisburg-Essen, 45147, Essen, Germany.

Attention-deficit/hyperactivity disorder (ADHD) is a frequently observed condition, with about 70% of individuals diagnosed with ADHD experiencing irregular sleep-wake patterns. Beyond the primary symptoms of ADHD, there is a significant overlap with sleep-related issues, indicating that disrupted sleep patterns may exacerbate ADHD symptoms. ADHD-related sleep problems can be traced to a delayed circadian rhythm and a later onset of melatonin production.

View Article and Find Full Text PDF

Evaluation of the Digital Ventilated Cage® system for circadian phenotyping.

Sci Rep

January 2025

Sir Jules Thorn Sleep and Circadian Neuroscience Institute, Kavli Institute for Nanoscience Discovery, Nuffield Department of Clinical Neurosciences, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.

The study of circadian rhythms has been critically dependent upon analysing mouse home cage activity, typically employing wheel running activity under different lighting conditions. Here we assess a novel method, the Digital Ventilated Cage (DVC, Tecniplast SpA, Italy), for circadian phenotyping. Based upon capacitive sensors mounted under black individually ventilated cages with inbuilt LED lighting, each cage becomes an independent light-controlled chamber.

View Article and Find Full Text PDF

The T22 protocol is an animal model of forced internal desynchronization, in which rats are exposed to an 11:11 light-dark (LD) cycle. This non-invasive protocol induces the dissociation of circadian rhythms in adult rats, making it possible to study the effects of circadian disruption on physiological and behavioral processes such as learning, memory, and emotional responses. However, the effects of circadian dissociation during other developmental stages, such as adolescence, remain unexplored.

View Article and Find Full Text PDF

In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!