Chrome-tanned leather solid wastes (leather finished trimmings (LFT) and chrome shavings (CS)) from tanneries were studied using pyrolysis and incineration. Detailed characterization of CS and LFT indicated higher calorific value of 15.77 MJ/kg and 19.97 MJ/kg respectively, which makes it suitable for thermal treatment. Thermal Gravimetric Analysis (TGA) of CS and LFT recorded a weight loss of 79.82% and 68.22% at 800 °C respectively. Energy-dispersive X-ray spectroscopy and scanning electron microscopy analysis for CS and LFT were also carried out. Pyrolysis of CS and LFT was carried out using a fixed bed-type pyrolysis unit at a temperature of 500 ± 10 °C for a reaction time of 30 min and three different by-products (bio-oil, biochar and pyrolytic gas) were obtained as a result of pyrolysis. From pyrolysis process, higher bio-oil yields of 52 wt.% and 49 wt.% from LFT and CS with calorific value of 28.0 and 27.8 MJ/kg respectively were obtained. The calorific values of the biochar obtained from LFT and CS were found to be 20.5 and 23.0 MJ/kg respectively. Incineration was carried out in the existing incineration facility of 150 kg/h capacity at a temperature of 1200 °C. The results of incineration process showed a higher weight reduction (93.0 wt.%) and higher concentration of gaseous emissions, revealing the need for off-gas treatment. Further, FT-IR spectra of residual ash from the incineration process revealed the occurrence of oxidation of trivalent chromium to its hexavalent form, which could be a potential raw material in the metallurgical/chemical industry for the synthesis of sodium chromate or ferrochrome alloy. Comparative experimental investigations of pyrolysis and incineration revealed that incineration could be a potential treatment and disposal option, in developing countries like India, for chrome-tanned leather solid wastes from tanneries, for producing heat energy and the residue with potential utilization viability in another industry paving a way towards circular economy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-07025-6DOI Listing

Publication Analysis

Top Keywords

pyrolysis incineration
12
incineration
8
treatment disposal
8
chrome-tanned leather
8
leather solid
8
solid wastes
8
lft carried
8
process higher
8
incineration process
8
lft
7

Similar Publications

Article Synopsis
  • Plastics are long-chain hydrocarbon compounds derived from nonrenewable petroleum, which have become crucial in daily life due to their lightweight, cost-effective, and versatile nature.
  • The rapid increase in plastic production and usage has led to significant waste disposal challenges, impacting both the environment and human health, while also contributing to the depletion of fossil fuels.
  • The study explores pyrolysis as a promising recycling method to convert waste polypropylene plastic into alternative fuels, evaluating its properties compared to diesel and their potential for engine use.
View Article and Find Full Text PDF

Thermochemical processing for the sustainable disposal of spent filter waste.

Chemosphere

December 2024

Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea. Electronic address:

High-efficiency particulate air filters are widely used for indoor air purification. Spent filter waste (SFW), which can trap infectious and toxic substances, is primarily treated via incineration. This method causes environmental concerns, particularly regarding the generation of carbon dioxide (CO) and other air pollutants.

View Article and Find Full Text PDF

As global crises escalate, the spotlight on sustainable development and Environmental, Social, and Governance (ESG) concerns intensifies. The amount of medical waste has reached an unprecedented level, and achieving a net-zero emissions target underlines the need for efficient waste management strategies. Despite various proposed valorization processes, there remains a critical need for an integrated assessment framework capable of evaluating their performance, efficiency, sustainability, and efficacy.

View Article and Find Full Text PDF

The procedure for disposing of textile waste sludge requires sustainable solutions due to numerous environmental issues associated with its disposal. The majority of textile manufacturers incinerate the waste sludge to meet their heating demands, which is harmful to the environment. It can also be used in soil amendment, biodegradable products, construction material and water treatment process as absorbent to remove the heavy metals etc.

View Article and Find Full Text PDF

Feedstock recycling of polycarbonate waste via thermochemical conversion supported by municipal solid waste incinerator bottom ash.

Chemosphere

November 2024

Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, South Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, South Korea. Electronic address:

The rising demand for plastics has driven up its production, causing severe environmental challenges like CO emissions and microplastic pollution. Furthermore, improper disposal of incinerator bottom ash (IBA), a byproduct of municipal solid waste (MSW) treatment, poses additional environmental risks. This study explores a method for recovering non-petroleum-based monomers from plastic products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!