BACKGROUND Long non-coding RNAs (LncRNAs) could potentially function as diagnostic markers for gastric carcinoma. Nevertheless, the expression profile and biological feature of LncRNAs in early gastric cancer (EGC) remains to be explored. MATERIAL AND METHODS LncRNA expression microarray analysis was performed on 6 paired EGC tissues. One deregulated LncRNA, LOC389332, was validated using a quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay using independent tissue samples and cell lines. The Cell Counting Kit-8 (CCK-8) assay and wound healing assay were conducted to evaluate its influences on the proliferation and migration of gastric cancer cells. LncRNA expression microarray and gene ontology (GO) analysis were also performed on the LOC389332 knockdown cell line model to explore the molecular feature of LOC389332 in gastric carcinoma. RESULTS The LncRNA expression profiling showed that 72 LncRNAs were significantly differentially expressed in EGC tissues. The results in the validation phase revealed that LOC389332 was remarkably overexpressed in gastric carcinoma tissues, precancerous lesions, and gastric cancer cells. Functional study showed that knockdown of LOC389332 expression could inhibit cell proliferation and migration. LncRNA expression microarray on the LOC389332 knockdown cell line model revealed that 393 mRNAs were differentially expressed. The GO enrichment analysis indicated that the downregulated genes were mainly associated with cell membrane function, signal transmission process, and cell adhesion process. CONCLUSIONS The LncRNA expression profile between EGC and gastritis tissues was significantly different. LOC389332 was potential non-coding oncogenes in gastric cancer, and it may perform its function through altering cell membrane function, signal transmission, and cell adhesion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6948287 | PMC |
http://dx.doi.org/10.12659/MSM.917935 | DOI Listing |
Gastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Discov Oncol
January 2025
Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Bioscience and Biotechnology, Banasthali Vidyapith, Niwai-Tonk, Rajasthan, 304022, India.
The prominence of circular RNAs (circRNAs) has surged in cancer research due to their distinctive properties and impact on cancer development. This review delves into the role of circRNAs in four key cancer types: colorectal cancer (CRC), gastric cancer (GC), liver cancer (HCC), and lung cancer (LUAD). The focus lies on their potential as cancer biomarkers and drug targets.
View Article and Find Full Text PDFBull Math Biol
January 2025
CFisUC, Department of Physics, University of Coimbra, Rua Larga, 3004-516, Coimbra, Portugal.
Hereditary diffuse gastric cancer is characterized by an increased risk of diffuse gastric cancer and lobular breast cancer, and is caused by pathogenic germline variants of E-cadherin and -E-catenin, which are key regulators of cell-cell adhesion. However, how the loss of cell-cell adhesion promotes cell dissemination remains to be fully understood. Therefore, a three-dimensional computer model was developed to describe the initial steps of diffuse gastric cancer development.
View Article and Find Full Text PDFSci Rep
January 2025
Chaum Life Center, CHA University School of Medicine, Seoul, 06062, Korea.
No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!