Multiple causes, apart from genetic inheritance, predispose to the production and aggregation of amyloid-β (Aβ) peptide and Alzheimer's disease (AD) development in the older population. There is currently no therapy or medicine to prevent or delay AD progression. One novel strategy against AD might involve the use of psychobiotics, probiotic gut bacteria with specific mental health benefits. Here, we report the neuronal and behavioral protective effects of the probiotic bacterium Bacillus subtilis in a Caenorhabditis elegans AD model. Aging and neuronal deterioration constitute important risk factors for AD development, and we showed that B. subtilis significantly delayed both detrimental processes in the wild-type C. elegans strain N2 compared with N2 worms colonized by the non-probiotic Escherichia coli OP50 strain. Importantly, B. subtilis alleviated the AD-related paralysis phenotype of the transgenic C. elegans strains CL2120 and GMC101 that express, in body wall muscle cells, the toxic peptides Aβ3-42 and Aβ1-42, respectively. B. subtilis-colonized CL2355 worms were protected from the behavioral deficits (e.g., poor chemotactic response and decreased body bends) produced by pan-neuronal Aβ1-42 expression. Notably, B. subtilis restored the lifespan level of C. elegans strains that express Aβ to values similar to the life expectancy of the wild-type strain N2 fed on E. coli OP50 cells. The B. subtilis proficiencies in quorum-sensing peptide (i.e., the Competence Sporulation Factor, CSF) synthesis and gut-associated biofilm formation (related to the anti-aging effect of the probiotic) play a crucial role in the anti-AD effects of B. subtilis. These novel results are discussed in the context of how B. subtilis might exert its beneficial effects from the gut to the brain of people with or at risk of developing AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-190837 | DOI Listing |
Vet Res Commun
January 2025
Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, Río Cuarto City, 5800, Córdoba, Argentina.
Post-weaning diarrhea (PWD) is a major concern for pig producers, as stress and early weaning increase susceptibility to enteropathogens like enterotoxigenic Escherichia coli (ETEC) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.
Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266100, China. Electronic address:
The excessive use of antibiotics in mariculture has surpassed permitted levels, leading to their release into surrounding waters and accumulation in cultured organisms, which poses risks to human health and highlighting the urgent need for alternatives to reduce antibiotic use. Therefore, the present study aimed to test four microbes including Debaryomyces hansenii, Ruegeria mobilis, Lactobacillus plantarum and Bacillus subtilis, on lowering Vibrio, promoting population increase and survival of Brachionus plicatilis. The digestive enzymes activity including α-amylase, lipase and protease, microbial retention and biochemical composition of rotifers were analyzed.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo n. 2 Prague 6 Czechia
The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
Background: Bacillus species produce antimicrobial lipopeptides (LPs) and methyl jasmonate (MeJA) induces resistance in harvested fruits against postharvest pathogens. However, there is limited evidence of the combined efficacy of Bacillus LPs and MeJA to suppress postharvest diseases.
Results: This study presents the combined effect of Bacillus LPs and MeJA to suppress P.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!