Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deoxynivalenol (DON) is one of the trichothecene mycotoxin, a frequent contaminant of pig feed. Surface-enhanced Raman spectroscopy (SERS) is a fast and ultrasensitive analytical tool for point-of-need applications to identify molecular fingerprint structures at low concentrations. However, the use of SERS for analyte detection with flexible and robust structures is still challenging. Herein, we have developed core-shell silver nanocubes coated with polydopamine (Ag NCs@PDA) SERS substrate for the quantitative detection of deoxynivalenol in pig feed. The Ag NCs@PDA substrate with ultrathin (1.6 nm) PDA shell thickness enhances the absorption of DON via hydrogen bonding and π-π stacking interactions, as well as improves the stability of the substrate. The results of the SERS showed a high analytical enhancement factor (AEF) of 1.82 × 10 and a detection limit (LOD) as low as femtomolar range (0.82 fM). The LOD of the Ag NCs@PDA substrate for DON detection is 1.8 times lower than the bare Ag NCs. Furthermore, the Ag NCs@PDA substrate is stable which retains 88.24% of the original Raman intensity after storage for three months. The obtained results demonstrate that the Ag NCs@PDA substrates can realize label-free detection of deoxynivalenol mycotoxin with high sensitivity, reproducibility, and stability. Our work proposes a low-cost method for the designing of the SERS sensing device, and has great potential to be applied in food safety, biomedical sciences, and environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.117940 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!