Pervious pavements are one of the most used construction techniques among the Sustainable Urban Drainage Systems (SUDS). The objective of this article is to analyse the energy life cycle and the life cycle cost of stormwater harvesting systems using pervious pavements models in order to compare and evaluate the differences and verify what influences the profitability and sustainability. The method proposed started with the definition of pervious pavement models based on literature review. The main characteristic of the models analysed was the use of porous asphalt with different underlying layers, i.e. thickness and material. The hydrological-hydraulic design of the pavements was also assessed. The potential for potable water savings due to harvesting stormwater from a parking lot was estimated for a public building in Florianópolis, southern Brazil. The models were compared to identify what most influences the potable water savings, the profitability and the sustainability of the systems. The maximum potable water savings found were 42%. It was also observed that the overall consumption of the building has been decreasing over the years, and the yearly rainfall has increased, which leads to a higher potential. In the current water consumption pattern, none of the systems evaluated was profitable or presented sustainability, evaluated herein as negative energy balance. However, it was verified that if analysed comparatively with non-pervious pavement, it was profitable to use stormwater harvested from the pervious pavement. Thus, it can be concluded that stormwater harvesting systems in combination with pervious pavements are promising, serving as SUDS and saving money for users. It is also noticeable that the use of porous asphalt is not recommended when aiming for systems with low embedded energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.115322 | DOI Listing |
Materials (Basel)
December 2024
Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).
View Article and Find Full Text PDFSci Rep
January 2025
Institute of International Rivers and Eco-Security, Yunnan University, Kunming, 650500, China.
Eco-concrete is an engineered porous material, often used in pervious pavement and slope protection. Volcanic rock, due to its loose and porous structure, can absorb pollutants and improve the performance of eco-concrete. Here, this study determined the performance of eco-concrete modified with different contents of volcanic rock in sewage purification.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Building Materials Engineering Laboratory, Department of Architecture, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8654, Japan.
The use of pervious concrete pavement systems with recycled aggregates is a sustainable and innovative solution to major urbanization challenges such as repurposing construction waste, alleviating urban waterlogging, and reducing heat-island effects. This study aims to investigate the effects of mixture proportions and molding methods on the performance of pervious recycled aggregate concrete (PRAC). To this end, the coarse aggregate size (4.
View Article and Find Full Text PDFJ Environ Manage
August 2024
Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China. Electronic address:
To address the negative environmental and economic impact of the large amounts of solid waste generated during travertine mining and to reduce the dependence on natural aggregates and cement for pervious concrete pavement applications, travertine waste, as aggregate and powder, was used for the travertine powder pervious concrete (TPPC) to improve the utilization of solid waste and decrease CO emissions. The experimental results showed that using 25% travertine aggregate and 5% powder results in a compressive strength reduction of only 9.8% to 25.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2024
School of Highway, Chang'an University, Xi'an, 710064, China.
Sponge city construction is an ideal approach to mitigate the degradation of urban water environments. Among road materials, permeable concrete pavement stands out due to its unique structure that allows rainwater runoff to flow through its pores. This paper analyzes the current application status and the prospect of different permeable pavement designs in China's sponge cities, aiming to offer valuable insights for urban planning and construction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!