Carbon emission peak has become a focus of political and academic concern in global community since the launch of Kyoto Protocol. China, as the largest carbon emitter, has committed to reaching the carbon peak by 2030 in Paris Agreement. This ambitious national goal requires the endeavors of individual sectors, particularly those carbon-intensive ones. Predicting the sectoral peaks under current endeavors and understanding driving forces for the carbon emission changes in the past years are substantial for guiding the allocation of the country's future efforts. In the past studies contextualized in China, the prediction of its carbon peaks seldom appeared at the sectoral level, which is considered as a research gap. Therefore, this study predicts the peaks at four carbon pillar sectors (i.e. industrial, building, transport and agricultural sectors) and identifies the driving forces for the carbon emission changes of them. This study hypothesized Carbon Kuznets curve (CKC) as the theoretical model for predicting the peaks and used Logarithmic mean Divisia index (LMDI) as the method to identify the driving forces. The results show that the carbon emission in the country will peak in 2036, six years later than the agreed year. The lateness of the national peak can be attributed to the significant lateness of three pillar sectors' peaks, occurring in 2031 for the industrial sector, 2035 for the building sector, 2043 for the transport sector, peak for the agricultural sector occurs four years earlier in 2026 though. Furthermore, the results show that carbon emission is significantly driven by the booming economic output and inhibited by decreasing energy intensity, but the slight fluctuation of energy structure plays a minor role in the four sectors. Policy adjustments are proposed for effectively and efficiently urging the on-time occurrence of the national peak.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.135768 | DOI Listing |
J Environ Manage
January 2025
Logistikum, University of Applied Sciences Upper Austria, 4400, Steyr, Austria; Supply Chain Intelligence Institute Austria, Vienna, Austria; Faculty of Business & Entrepreneurship, Daffodil International University, Daffodil Smart City, Ashulia, Dhaka, Bangladesh. Electronic address:
Environmental taxes play a critical role in mitigating air pollution and fostering sustainability by internalizing the social costs of environmental damage. By imposing financial disincentives on polluters, these taxes encourage cleaner practices and technological innovation. Using panel ARDL models, this study examines the impact of environmental taxes on CO₂ emissions across 38 OECD countries, accounting for cross-sectional dependence, non-stationarity, and heterogeneity.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of the Environment, University of Queensland, QLD, Australia.
The transition to net zero emissions requires the capture of carbon dioxide from industrial point sources, and direct air capture (DAC) from the atmosphere for geological storage. Dissolved CO has reactivity to rock core, and while the majority of previous studies have concentrated on reservoir rock or cap-rock reactivity, the underlying seal formation may also react with CO. Drill core from the underlying seal of a target CO storage site was reacted at in situ conditions with pure CO, and compared with an impure CO stream with SO, NO and O that could be expected from hard to abate industries.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Since the Industrial Revolution, significant changes in global land-use patterns have occurred, which have disrupted terrestrial carbon emissions. However, the disturbance processes, change trends, and distribution patterns are not clear. Therefore, the changes in terrestrial carbon emissions (E) caused by land-use change (LUC) since 1850 were analyzed in this study.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Bishan District of Chongqing Modern Service Industry Development Promotion Centre, Chongqing, China.
The rapid development of China's economy and the acceleration of the urbanization process have led to a significant increase in carbon emissions, and more effective policies are urgently needed. As the first city in China to be approved for the overall master plan of territorial space, Chongqing is facing new opportunities in urban construction. This research constructed a classification system of the territorial space functional areas in Chongqing (CQ-TSFA) and matched the corresponding carbon emission and carbon sequestration projects.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Physics Department, Khalifa University, Abu-Dhabi, United Arab Emirates.
The spectrum of carbon monoxide is important for astrophysical media, such as planetary atmospheres, interstellar space, exoplanetary and stellar atmospheres; it also important in plasma physics, laser physics and combustion. Interpreting its spectral signature requires a deep and thorough understanding of its absorption and emission properties. A new accurate spectroscopic model for the ground and electronically-excited states of the CO molecule computed at the aug-cc-pV5Z CASSCF/MRCI+Q level is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!