A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Corrosion behavior of pure titanium anodes in saline medium and their performance for humic acid removal by electrocoagulation. | LitMetric

The corrosion behavior of Ti electrodes and the dependence of their anodic dissolution with the experimental conditions, namely pH, current density (j) and supporting electrolyte nature, have been investigated. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests have been performed. It has been found that pH has a relevant effect on the electrochemical dissolution of Ti. In chloride medium, metal dissolution was partially caused by pitting corrosion and the corrosion potential was shifted to more cathodic values. Conversely, in phosphate medium, corrosion was inhibited by the formation of a compact passive layer of titanium hydroxide/phosphate. Further, the mechanisms of sacrificial Ti anode dissolution during the electrocoagulation process are discussed. The influence of the supporting electrolyte, pH and j on the effectiveness of the electrocoagulation process for humic acid (HA) removal was assessed. Under optimized conditions, total decolorization was achieved in 60 min, eventually attaining 94% total organic carbon (TOC) removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.125674DOI Listing

Publication Analysis

Top Keywords

corrosion behavior
8
humic acid
8
acid removal
8
supporting electrolyte
8
electrocoagulation process
8
corrosion
5
behavior pure
4
pure titanium
4
titanium anodes
4
anodes saline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!