Collagen-like sequences encoded by extremophilic and extremotolerant bacteria.

Genomics

Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT- 10257 Vilnius, Lithuania.

Published: May 2020

Collagens and collagen-like proteins are found in a wide range of organisms. The common feature of these proteins is a triple helix fold, requiring a characteristic pattern of amino acid sequences, composed of Gly-X-Y tripeptide repeats. Collagen-like proteins from bacteria are heterogeneous in terms of length and amino acid composition of their collagenous sequences. However, different bacteria live in different environments, some at extreme temperatures and conditions. This study explores the occurrence of collagen-like sequences in the genomes of different extreme condition-adapted bacteria, and investigates features that could be linked to conditions where they thrive. Our results show that proteins containing collagen-like sequences are encoded by genomes of various extremophiles. Some of these proteins contain conservative domains, characteristic of cell or endospore surface proteins, while most other proteins are unknown. The characteristics of collagenous sequences may depend on both, the phylogenetic relationship and the living conditions of the bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2019.12.023DOI Listing

Publication Analysis

Top Keywords

collagen-like sequences
12
sequences encoded
8
collagen-like proteins
8
amino acid
8
collagenous sequences
8
proteins
7
collagen-like
5
bacteria
5
sequences
5
encoded extremophilic
4

Similar Publications

Methods for scoring matrix adjustment decrease the significance of biased residues to better detect homology between protein sequences. This is because non-homologous proteins often contain fragments with non-standard compositions that are strikingly similar to each other. However, these fragments are also functionally important in proteins and are receiving an increasing attention from the scientific community.

View Article and Find Full Text PDF

Vascular Ehlers-Danlos syndrome (vEDS) arises from mutations in collagen-III, a major structural component of the extracellular matrix (ECM) in vascularized tissues, including blood vessels. Fibrillar collagens form a triple-helix that is characterized by a canonical (Gly-X-Y)n sequence. The substitution of another amino acid for Gly within this conserved repeating sequence is associated with several hereditary connective tissue disorders, including vEDS.

View Article and Find Full Text PDF

The de novo design of self-assembling peptides has garnered significant attention in scientific research. While alpha-helical assemblies have been extensively studied, exploration of polyproline type II helices, such as those found in collagen, remains relatively limited. In this study, we focus on understanding the sequence-structure relationship in hierarchical assemblies of collagen-like peptides, using defense collagen Surfactant Protein A as a model.

View Article and Find Full Text PDF

A Collagen Triple Helix without the Super Helical Twist.

bioRxiv

September 2024

Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA.

Collagens are ubiquitous in biology functioning as the backbone of the extracellular matrix, forming the primary structural components of key immune system complexes, and fulfilling numerous other structural roles in a variety of systems. Despite this, there is limited understanding of how triple helices, the basic collagen structural units, pack into collagenous assemblies. Here we use a peptide self-assembly system to design collagenous assemblies based on the C1q collagen-like region.

View Article and Find Full Text PDF

Versatile Self-Assembly of Triblock Peptides into Stable Collagen Mimetic Heterotrimers.

Int J Mol Sci

June 2024

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

The construction of peptides to mimic heterogeneous proteins such as type I collagen plays a pivotal role in deciphering their function and pathogenesis. However, progress in the field has been severely hampered by the lack of capability to create stable heterotrimers with desired functional sequences and without the effect of homotrimers. We have herein developed a set of triblock peptides that can assemble into collagen mimetic heterotrimers with desired amino acids and are free from the interference of homotrimers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!