New 2-(thiophen-2-yl)-1H-indole derivatives bearing hydrophobic substituents at the 3-position were designed, synthesized and evaluated for their inhibition of HIV-1 reverse transcriptase (RT) enzyme. Dialkylphosphites (2a-c) or trialkylphosphites (3a-c) were reacted with 2-(thiophen-2-yl)-1H-indole-3-carbaldehyde (1) yielding the corresponding α-hydroxyphosphonate adducts (7a-7c). The reaction of compound 1 with the ylidenetriphenylphosphoranes (4a-4c) proceeds via Wittig mechanism giving the corresponding ethylenes (E, 8a-c). Compounds 8b,c were equally obtained upon reacting aldehyde 1 with the appropriate dialkylphosphonates 5a,b under the Horner-Wittig reaction conditions. On the other hand, the reaction of aldehyde 1 with diethyl cyanomethylene phosphonate (5c) yielded a mixture of the E-ethylene 10 and the cyanovinyl phosphonate 11. The thioaldehyde 12 was obtained upon refluxing aldehyde 1 with the Lawesson's reagent (LR, 6a) or with the Japanese reagent (JR, 6b) in dry toluene. Upon evaluation of HIV-1 Reverse Transcriptase enzyme inhibition, compound 8b (IC = 2.93 nM) exhibited the superior HIV-1 RT inhibition and its potency was about 3-folds that of Efavirenz (IC = 6.03 nM). Also, compounds 9a (IC = 4.09 nM) and 12 (IC = 3.54 nM) showed significantly higher inhibition potency. Moreover, compounds 7b (IC = 7.48 nM), and 8a (IC = 4.55 nM) showed potency not significantly different from that of Efavirenz. Molecular docking experiments on these potent compounds was in accordance with the in vitro data and confirmed binding of these compounds to the enzyme through ring-stacking and hydrogen bond interactions. According to these results, the new molecules would serve as potent HIV-1 NNRTIs inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.103521DOI Listing

Publication Analysis

Top Keywords

reverse transcriptase
12
molecular docking
8
potent hiv-1
8
hiv-1 reverse
8
transcriptase enzyme
8
inhibition potency
8
hiv-1
5
compounds
5
synthesis molecular
4
docking biological
4

Similar Publications

Background: The inelasticity of dartos tissue and the regulation of collagen expression are significant factors in the pathophysiology of chordee associated with hypospadias. While the COL2A1:COL1A1 ratio is recognised as a measure of cell differentiation, there is yet to be a study specifically examining this ratio in hypospadias. The aim of this study was to determine the COL2A1:COL1A1 ratio.

View Article and Find Full Text PDF

Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of malignancies with multifactorial aetiologies. High-risk human papillomavirus (hrHPV) infections, particularly HPV16, and the dysregulation of telomerase activity, specifically through its catalytic subunit, telomerase reverse transcriptase (TERT) are among the key contributors to HNSCC development and progression. HPV promotes oncogenesis via the E6 and E7 oncoproteins, which inactivate tumour suppressors TP53 and RB1, leading to unchecked cellular proliferation.

View Article and Find Full Text PDF

Background: Neuropsychiatric adverse events (NPAEs) are associated with several antiretrovirals. Doravirine (DOR), a non-nucleoside reverse transcriptase inhibitor indicated for HIV-1 treatment, does not interact significantly with known neurotransmitter receptors in vitro. First-line therapy with DOR-based regimens resulted in significantly fewer NPAEs than efavirenz/emtricitabine/tenofovir disoproxil fumarate (EFV/FTC/TDF) and similar rates to those of ritonavir-boosted darunavir (DRV/r) with 2 nucleos(t)ide reverse transcriptase inhibitors (NRTIs) through Week 96 of the phase 3 DRIVE-AHEAD and DRIVE-FORWARD studies, respectively.

View Article and Find Full Text PDF

Protein-RNA interactions play important biological roles and hence reactive RNA probes for cross-linking with proteins are important tools in their identification and study. To this end, we designed and synthesized 5'-O-triphosphates bearing a reactive squaramate group attached to position 5 of cytidine or position 7 of 7-deazaadenosine and used them as substrates for polymerase synthesis of modified RNA. In vitro transcription with T7 RNA polymerase or primer extension using TGK polymerase was used for synthesis of squaramate-modified RNA probes which underwent covalent bioconjugations with amine-linked fluorophore and lysine-containing peptides and proteins including several viral RNA polymerases or HIV reverse transcriptase.

View Article and Find Full Text PDF

Improved split prime editors enable efficient in vivo genome editing.

Cell Rep

December 2024

Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China; School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China. Electronic address:

Efficient prime editor (PE) delivery in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), the editing efficiency at different gene loci varies among split sites. Furthermore, efficient split sites within Cas9 nickase (Cas9n) are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!