A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Region-specific upregulation of HNK-1 glycan in the PRMT1-deficient brain. | LitMetric

Region-specific upregulation of HNK-1 glycan in the PRMT1-deficient brain.

Biochim Biophys Acta Gen Subj

Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan. Electronic address:

Published: March 2020

Background: Brains express structurally unique glycans, including human natural killer-1 (HNK-1), which participate in development and high-order functions. However, the regulatory mechanisms of expression of these brain-specific glycans are largely unknown. We examined whether arginine methylation, another type of protein modification essential for neural development, impacts the expression of various glycans in the developing brain.

Methods: We analyzed several types of glycans, including the HNK-1 epitope, in the cerebellum and cerebral cortex from mice with nervous system-specific knockout of protein arginine methyltransferase 1 (PRMT1). We also analyzed the expression levels of glycosyltransferases responsible for HNK-1 and of HNK-1 carrier glycoproteins by quantitative RT-PCR and western blotting.

Results: Among several glycans, expression of HNK-1 glycan was strikingly upregulated in the PRMT1-deficient cerebellum. Furthermore, such upregulation was found in the cerebellum but not in the cerebral cortex. Regarding the mechanisms, we demonstrated that the mRNA level and activity of the responsible glycosyltransferase (B3gat1) were elevated in the knockout cerebellum. We also showed that the expression of HNK-1 carrier glycoproteins such as neural cell adhesion molecule (NCAM), L1 and AMPA receptor subunit GluA2 were also increased in the PRMT1-deficient cerebellum.

Conclusions: Loss of arginine methylation leads to an increase in HNK-1 glycan in the developing cerebellum but not in the cerebral cortex via upregulation of the biosynthetic enzyme and carrier glycoproteins.

General Significance: PRMT1 is a novel regulator of HNK-1 glycan production in the cerebellum. Mechanisms involving crosstalk between glycosylation and arginine methylation are suggested to occur.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2019.129509DOI Listing

Publication Analysis

Top Keywords

hnk-1 glycan
16
arginine methylation
12
cerebellum cerebral
12
cerebral cortex
12
hnk-1
9
glycans including
8
hnk-1 carrier
8
carrier glycoproteins
8
expression hnk-1
8
cerebellum
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!