In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102895PMC
http://dx.doi.org/10.1016/j.cell.2019.12.004DOI Listing

Publication Analysis

Top Keywords

positioning heterochromatin
12
nuclear periphery
12
histone turnover
8
turnover promote
8
perinuclear positioning
8
gene silencing
8
heterochromatin
7
nuclear
4
heterochromatin nuclear
4
periphery suppresses
4

Similar Publications

The SUMO-targeted ubiquitin ligase (STUbL) family is involved in multiple cellular processes via a wide range of mechanisms to maintain genome stability. One of the evolutionarily conserved functions of STUbL is to promote changes in the nuclear positioning of DNA lesions, targeting them to the nuclear periphery. In Schizossacharomyces pombe, the STUbL Slx8 is a regulator of SUMOylated proteins and promotes replication stress tolerance by counteracting the toxicity of SUMO conjugates.

View Article and Find Full Text PDF

Background: Organization of the eukaryotic genome is essential for proper function, including gene expression. In metazoans, chromatin loops and Topologically Associated Domains (TADs) organize genes into transcription factories, while chromosomes occupy nuclear territories in which silent heterochromatin is compartmentalized at the nuclear periphery and active euchromatin localizes to the nucleus center. A similar hierarchical organization occurs in the fungus Neurospora crassa where its seven chromosomes form a Rabl conformation typified by heterochromatic centromeres and telomeres independently clustering at the nuclear membrane, while interspersed heterochromatic loci aggregate across Megabases of linear genomic distance to loop chromatin in TAD-like structures.

View Article and Find Full Text PDF

In Brief: Spatial genome organization refers to the arrangement of chromosomes within the nucleus, undergoing significant chromatin remodeling during the early stages of mammalian development. This review explores the mechanisms behind this organization, focusing on heterochromatin and its potential role in regulating embryonic genome expression.

Abstract: Spatial genome organization refers to the conformation of the chromosomes and their relative positioning within the nucleus.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the unique structure and composition of pericentromeres in Hieracium alpinum, highlighting the differences in centromeric DNA among closely related species.
  • Researchers identified a specific tandem repeat in the pericentromeres that helped categorize genomic data for analysis.
  • Results revealed a complex arrangement of satellite DNA and retrotransposons, suggesting rapid structural evolution through microinversions, contributing to the uniqueness of this plant's genome.
View Article and Find Full Text PDF

Resolution of ring chromosomes, Robertsonian translocations, and complex structural variants from long-read sequencing and telomere-to-telomere assembly.

Am J Hum Genet

December 2024

Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Electronic address:

Article Synopsis
  • Researchers tackled the challenge of studying structural variants (SVs) in repetitive genomic regions using advanced technologies like long-read sequencing and the gapless T2T assembly.
  • They successfully analyzed 13 complex cases, resolving 10 by identifying specific genomic breakpoints and structures that were previously difficult to sequence, including Robertsonian translocations and ring chromosomes.
  • The study highlighted new mechanisms for SV formation and provided insights into how these genome variations affect gene expression and potential implications for disease diagnosis and genome biology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!