Development of multicellular organisms requires coordination of cell division and differentiation across tissues. In plants, directional signaling, and implicitly cell polarity, is proposed to participate in this coordination; however, mechanistic links between intercellular signaling, cell polarity, and cellular organization remain unclear. Here, we investigate the localization and function of INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) in root development. We find that IRK-GFP localizes to the outer plasma membrane domain in endodermal cells but localizes to different domains in other cell types. Our results suggest that IRK localization is informed locally by adjacent cell types. irk mutants have excess cell divisions in the ground tissue stem cells and endodermis, indicating IRK functions to maintain tissue organization through inhibition of specific cell divisions. We predict that IRK perceives a directional cue that negatively regulates these cell divisions, thus linking intercellular signaling and cell polarity with the control of oriented cell divisions during development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2019.12.001 | DOI Listing |
J Dent Sci
December 2024
Blood Transfusion Haematology Hospital No. 2, Ho Chi Minh City, Viet Nam.
Background/purpose: Oral squamous cell carcinoma (OSCC) is notorious for its low survival rates, due to the advanced stage at which it is commonly diagnosed. To enhance early detection and improve prognostic assessments, our study harnesses the power of machine learning (ML) to dissect and interpret complex patterns within mRNA-sequencing (RNA-seq) data and clinical-histopathological features.
Materials And Methods: 206 retrospective Vietnamese OSCC formalin-fixed paraffin-embedded (FFPE) tumor samples, of which 101 were subjected to RNA-seq for classification based on gene expression.
J Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA 22903, USA.
The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!