Current therapeutic strategies for the treatment of bone metastases are often limited by the lack of selectivity, severe systemic toxicity and suboptimal efficacy. Nanomedicine meditated chemo-photodynamic therapy provides a promising therapeutic opportunity for enhanced cancer therapy. Herein, we constructed an alendronate (ALN)-functionalized bone-seeking nanoagent (BTZ@ZnPc-ALN) to co-deliver the proteasome inhibitor bortezomib (BTZ) and the photosensitizer Zinc phthalocyanine (ZnPc) for synergistic chemo-photodynamic therapy of bone metastases. Results showed that BTZ@ZnPc-ALN possessed favorable bone affinity both in vitro and in vivo and could release drug in a pH-responsive manner. Under irradiation, BTZ@ZnPc-ALN could generate reactive oxygen species (ROS) to cause mitochondrial damage, and increase the cytosolic Ca levels and the expression of GRP78 protein to induce excessive endoplasmic reticulum (ER) stress, thereby synergistically inhibiting cell proliferation. More importantly, BTZ@ZnPc-ALN could prolong blood circulation time and preferentially navigate to the bone affected site. As a result, tumor growth was significantly inhibited by bone targeted chemo-photodynamic therapy, with tumor volume cut down by 85% compared with PBS group and bone remained undamaged. Besides, the systemic toxicity of BTZ was significantly reduced. Therefore, the versatile nanoagent is expected to be a promising nanoplatform to concern multiple intracellular stress for remarkable synergistic chemo-photodynamic therapy of bone metastases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2019.12.043DOI Listing

Publication Analysis

Top Keywords

chemo-photodynamic therapy
20
bone metastases
16
targeted chemo-photodynamic
8
bone
8
systemic toxicity
8
synergistic chemo-photodynamic
8
therapy bone
8
therapy
6
chemo-photodynamic
5
light-triggered self-reinforced
4

Similar Publications

Bioorthogonal strategy-triggered In situ co-activation of aggregation-induced emission photosensitizers and chemotherapeutic prodrugs for boosting synergistic chemo-photodynamic-immunotherapy.

Biomaterials

January 2025

State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China. Electronic address:

In situ activation of prodrugs or photosensitizers is a promising strategy for specifically killing tumor cells while avoiding toxic side effects. Herein, we originally develop a bioorthogonally activatable prodrug and pro-photosensitizer system to synchronously yield an aggregation-induced emission (AIE) photosensitizer and a chemotherapeutic drug for synergistic chemo-photodynamic-immunotherapy of tumors. By employing molecular engineering strategy, we rationally design a family of tetrazine-functionalized tetraphenylene-based photosensitizers, one of which (named TzPS5) exhibits a high turn-on ratio, a NIR emission, a typical AIE character, and an excellent ROS generation efficiency upon bioorthogonal-activation.

View Article and Find Full Text PDF

Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy.

Mol Pharm

January 2025

School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.

Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.

View Article and Find Full Text PDF

Tumor-targeted nanosystem with hypoxia inducible factor 1α inhibition for synergistic chemo-photodynamic therapy against hypoxic tumor.

Colloids Surf B Biointerfaces

December 2024

School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; National Innovation Platform for medical industry-education integration, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China. Electronic address:

Photodynamic therapy (PDT) holds an essential role in the therapy of tumors. However, PDT consumes tissue oxygen and diminishes its own efficacy by inducing tumor hypoxia through the HIF-1α/VEGF pathway. Therefore, overcoming the photodynamic exacerbation of tumor hypoxia could reverse tumor microenvironment and enhance PDT.

View Article and Find Full Text PDF

Breast cancer ranks as the second most widespread form of cancer globally. Currently, combination therapy is being actively employed in clinical practice to augment the efficiency of anticancer treatment. Hence, the objective of this study was to assess the therapeutic efficacy of a combination of femtosecond laser-based photodynamic therapy (PDT) utilizing two distinct photosensitizers (PSs), zinc phthalocyanine tetrasulfonate (ZnPcS) and α,β,χ,δ porphyrin-Tetrakis (1-methylpyridinium-4-yl) p-Toluenesulfonate porphyrin (TMPyP) in conjunction with doxorubicin chemotherapeutic agent, on mammary carcinomas experimentally induced in female mice using 7,12-dimethylbenz[a] anthracene (DMBA).

View Article and Find Full Text PDF

In spite of the hypoxia tumor microenvironment, an efficacious treatment with minimal invasiveness is highly desirable. Among common cellular organelles, mitochondria is a common target for inductive cellular apoptosis and tumor proliferation inhibition. Nevertheless, tumor hypoxic circumstances always give rise to poor therapeutic efficiency and instead lead to lesion recurrence and unsatisfactory prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!