Cancer stemness contributes to cluster formation of colon cancer cells and high metastatic potentials.

Clin Exp Pharmacol Physiol

Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia.

Published: May 2020

The ability of cancer cells to form clusters is a characteristic feature in the development of metastatic tumours with drug resistance. Several studies demonstrated that clusters of circulating tumour cells (CTCs) have a greater metastatic potential to establish new tumours at secondary sites than single CTCs. However, the mechanism of cluster formation is not well understood. In this study, we investigated whether cancer stemness would contribute to cluster formation. We used a tumour sphere culture method to enrich cancer stem cells (CSCs) from colon cancer cells and found that during the second generation of sphere culture, clusters (between 3 and 5 cells) formed within the first 24 hours, whereas the rest remained as single cells. The clusters were analysed for stemness and metastatic potential, including gene expressions for cancer stemness (CD133 and Lgr5), epithelial-mesenchymal transition (E-cadherin and TGF-β 1-3) and hypoxia-induced factors (HIF-1α and HIF-2α). The results showed that the clusters expressed higher levels of these genes and colon CSC surface markers (including CD24, CD44 and CD133) than the single cells. Among these markers, CD24 seemed the major contributor linking the cells into the clusters. These clusters also showed a stronger ability to both form colonies and migrate. Our data collectively suggest that colon cancer stemness contributes to cluster formation and that clustered cells exhibit a great metastatic potential. Our study thus provides a method to study the CTC clusters and derive insight into oncogenesis and metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.13247DOI Listing

Publication Analysis

Top Keywords

cancer stemness
16
cluster formation
16
colon cancer
12
cancer cells
12
metastatic potential
12
cells
10
cancer
8
stemness contributes
8
contributes cluster
8
clusters
8

Similar Publications

Polyomavirus enhancer activator 3 (PEA3), an ETS transcription factor, has been documented to regulate the development and metastasis of human cancers. Nonetheless, a thorough analysis examining the relationship between the PEA3 subfamily members and tumour development, prognosis, and the tumour microenvironment (TME) across various cancer types has not yet been conducted. The expression profiles and prognostic significance of the PEA3 subfamily were evaluated using data from the GEO, TCGA, and PrognoScan databases, in conjunction with COX regression analyses and the Kaplan-Meier Plotter.

View Article and Find Full Text PDF

Lung cancer ranks as the most prevalent malignant neoplasm worldwide, contributing significantly to cancer-related mortality. Stemness is a well-recognized factor underlying radiotherapy resistance, recurrence and metastasis in non-small-cell lung cancer (NSCLC) patients. Our prior investigations have established the role of IQ motif containing GTPase-activating protein 3 (IQGAP3) in mediating radiotherapy resistance in lung cancer, but its impact on lung cancer stemness remains unexplored.

View Article and Find Full Text PDF

Insulin-like growth factor II mRNA-binding proteins (IGF2BPs), a family of RNA-binding proteins, are pivotal in regulating RNA dynamics, encompassing processes such as localization, metabolism, stability, and translation through the formation of ribonucleoprotein complexes. First identified in 1999 for their affinity to insulin-like growth factor II mRNA, IGF2BPs have been implicated in promoting tumor malignancy behaviors, including proliferation, metastasis, and the maintenance of stemness, which are associated with unfavorable outcomes in various cancers. Additionally, non-coding RNAs (ncRNAs), particularly long non-coding RNAs, circular RNAs, and microRNAs, play critical roles in cancer progression through intricate protein-RNA interactions.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a conserved cellular process critical for embryogenesis, wound healing, and cancer metastasis. During EMT, cells undergo large-scale metabolic reprogramming that supports multiple functional phenotypes including migration, invasion, survival, chemo-resistance and stemness. However, the extent of metabolic network rewiring during EMT is unclear.

View Article and Find Full Text PDF

Prognostic model based on tumor stemness genes for triple-negative breast cancer.

Sci Rep

December 2024

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.

Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis and lack of effective treatment. In this study, TNBCs were analyzed from the perspective of tumor stemness based on scRNA-seq data. The analysis showed that tumor cells of TNBC were divided into 4 subtypes, with subtype 2 having the highest stemness score.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!