A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Osteoporosis genome-wide association study variant c.3781 C>A is regulated by a novel anti-osteogenic factor miR-345-5p. | LitMetric

Osteoporosis genome-wide association study variant c.3781 C>A is regulated by a novel anti-osteogenic factor miR-345-5p.

Hum Mutat

Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, China.

Published: March 2020

Upstream transcription factor family member 3 (USF3) c.3781C>A (rs1026364) in the 3'-untranslated region (3'-UTR) has been firmly associated with bone mineral density (BMD) in genome-wide association study (GWAS). However, the molecular mechanism by which it influences BMD and osteoporosis is unknown. Bioinformatics analyses suggested that the risk c.3781A allele creates a target site for hsa-miR-345-5p binding. Luciferase assay validated that the c.3781A allele displayed significantly lower luciferase activities than the c.3781C allele in the human osteoblast cell line hFOB1.19, osteosarcoma cell lines U-2OS and Saos-2, and embryonic kidney cell line 293T. Furthermore, hsa-miR-345-5p regulated USF3 expression on both messenger RNA and protein levels in hFOB1.19 and U937 cells with heterozygous A/C genotype. Transfection of hsa-miR-345-5p antagomiR in heterozygous hFOB1.19 cells significantly increased the expression of osteogenic marker genes RUNX2, OSTERIX, COL1A1, ALP, OPN, OCN, and alkaline phosphatase activity and matrix mineralization level. Importantly, we found that hsa-miR-345-5p also inhibits osteoblast maturation in cell lines U-2OS with hsa-miR-345-5p nonbinding C/C genotype by targeting RUNX3 and SMAD1. Our findings uncovered a novel pathogenetic mechanism of osteoporosis by GWAS variant c.3781C>A-mediated disruption of hsa-miR-345-5p binding at the 3'-UTR of USF3 and the functional role of hsa-miR-345-5p in osteogenic differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23959DOI Listing

Publication Analysis

Top Keywords

genome-wide association
8
association study
8
c3781a allele
8
hsa-mir-345-5p binding
8
cell lines
8
lines u-2os
8
hsa-mir-345-5p
7
osteoporosis genome-wide
4
study variant
4
variant c3781
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!