Bidirectional Selector Utilizing Hybrid Diodes for PCRAM Applications.

Sci Rep

Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba-yama, Sendai, 980-8579, Japan.

Published: December 2019

Three-dimensional crossbar technology has been of great significance for realizing high density and multiple terabytes of data storage in memory devices. However, to further scale down the size of memory devices, a selector exhibiting nonlinear electrical properties should be in series with a memory layer in case of unwanted sneak current disturbance. Conventional selectors usually utilize a complicated multilayer structure to realize the high nonlinearity of current, which might be incompatible with certain manufacturing processes or limit the scalability of memory. Herein, we propose a simple heterojunction diode using an n-type oxide semiconductor, specifically, InGaZnO (IGZO), and a p-type phase change material (PCM), specifically, N-doped CrGeTe (NCrGT), to realize self-selective performance. The electrode/IGZO/NCrGT/plug-electrode structure with an IGZO/NCrGT pn diode and NCrGT/plug-electrode Schottky diode can realize bidirectional, self-selective phase change random access memory (PCRAM) for either amorphous or crystalline NCrGT. The approximate equilibrium energy band diagrams for the IGZO/NCrGT pn junction and the IGZO/NCrGT/W hybrid junction were proposed to explain the possible conduction mechanism. We demonstrated that hybrid diode-type PCM memory exhibits both selectivity and resistive switching characteristics. The present findings offer new insight into selector technology for PCM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934602PMC
http://dx.doi.org/10.1038/s41598-019-56768-2DOI Listing

Publication Analysis

Top Keywords

memory devices
8
phase change
8
memory
6
bidirectional selector
4
selector utilizing
4
utilizing hybrid
4
hybrid diodes
4
diodes pcram
4
pcram applications
4
applications three-dimensional
4

Similar Publications

Phase change materials such as Ge2Sb2Te5 (GST) are ideal candidates for next-generation, non-volatile, solid-state memory due to the ability to retain binary data in the amorphous and crystal phases and rapidly transition between these phases to write/erase information. Thus, there is wide interest in using molecular modeling to study GST. Recently, a Gaussian Approximation Potential (GAP) was trained for GST to reproduce Density Functional Theory (DFT) energies and forces at a fraction of the computational cost [Zhou et al.

View Article and Find Full Text PDF

Nonvolatile Memory Device Based on the Ferroelectric Metal/Ferroelectric Semiconductor Junction.

Nano Lett

January 2025

Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

The ferroelectric tunnel junction (FTJ) is a competitive candidate for post-Moore nonvolatile memories due to its low power consumption and nonvolatility, with its performance being strongly dependent on the conditions for contact between the ferroelectric material and the metal electrode. The development of two-dimensional materials in recent years has offered new opportunities such as functional metal layers, which is challenging for traditional FTJ systems. Here, we introduce the newly discovered ferroelectric metal WTe as the electrode to construct WTe/α-InSe/Au ferroelectric semiconductor junctions.

View Article and Find Full Text PDF

In recent years, the development of biodegradable, cell-adhesive polymeric implants and minimally invasive surgery has significantly advanced healthcare. These materials exhibit multifunctional properties like self-healing, shape-memory, and cell adhesion, which can be achieved through novel chemical approaches. Engineering of such materials and their scalability using a classical polymer network without complex chemical synthesis and modification has been a great challenge, which potentially can be resolved using biobased dynamic covalent chemistry (DCC).

View Article and Find Full Text PDF

Objective: This review aimed to examine if there is any difference in the risk of thrombosis and central line-associated bloodstream infection (CLABSI) with the use of peripherally inserted central catheter (PICC) and conventional central venous catheters (CVC) in hematological cancer patients.

Methods: We searched the online databases of PubMed, CENTRAL, Scopus, Web of Science, and Embase for all types of studies comparing the risk of thrombosis and CLABSI between PICC and CVC. The search ended on 23rd September 2024.

View Article and Find Full Text PDF

3D Vertical Ferroelectric Capacitors with Excellent Scalability.

Nano Lett

January 2025

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.

Three-dimensional vertically stacked memory is more cost-effective than two-dimensional stacked memory. Vertically stacked memory using ferroelectric materials has great potential not only in high-density memory but also in neuromorphic fields because it secures low voltage and fast operation speed. This paper presents the implementation of a ferroelectric capacitor comprising a vertical two-layer stacked structure composed of a titanium nitride (TiN)/aluminum-doped hafnium oxide/TiN configuration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!