Pre-stimulus alpha (8-12 Hz) and beta (16-20 Hz) oscillations have been frequently linked to the prediction of upcoming sensory input. Do these frequency bands serve as a neural marker of linguistic prediction as well? We hypothesized that if pre-stimulus alpha and beta oscillations index language predictions, their power should monotonically relate to the degree of predictability of incoming words based on past context. We expected that the more predictable the last word of a sentence, the stronger the alpha and beta power modulation. To test this, we measured neural responses with magnetoencephalography of healthy individuals during exposure to a set of linguistically matched sentences featuring three levels of sentence context constraint (high, medium and low constraint). We observed fluctuations in alpha and beta power before last word onset, and modulations in M400 amplitude after last word onset. The M400 amplitude was monotonically related to the degree of context constraint, with a high constraining context resulting in the strongest amplitude decrease. In contrast, pre-stimulus alpha and beta power decreased more strongly for intermediate constraints, followed by high and low constraints. Therefore, unlike the M400, pre-stimulus alpha and beta dynamics were not indexing the degree of word predictability from sentence context.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934725 | PMC |
http://dx.doi.org/10.1038/s41598-019-56600-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!