Albeit being an effective therapy for various cutaneous conditions, UV-B irradiation can cause severe skin damage. While multipotent mesenchymal stem cells (MSCs) may aid the regeneration of UV-B-induced skin injuries, the influence of UV-B irradiation on MSCs remains widely unknown. Here, we show that human MSCs are relatively resistant to UV-B irradiation compared to dermal fibroblasts. MSCs exhibited higher clonogenic survival, proliferative activity and viability than dermal fibroblasts after exposure to UV-B irradiation. Cellular adhesion, morphology and expression of characteristic surface marker patterns remained largely unaffected in UV-irradiated MSCs. The differentiation ability along the adipogenic, osteogenic and chondrogenic lineages was preserved after UV-B treatment. However, UV-B radiation resulted in a reduced ability of MSCs and dermal fibroblasts to migrate. MSCs exhibited low apoptosis rates after UV-B irradiation and repaired UV-B-induced cyclobutane pyrimidine dimers more efficiently than dermal fibroblasts. UV-B irradiation led to prolonged p53 protein stability and increased p21 protein expression resulting in a prolonged G2 arrest and senescence induction in MSCs. The observed resistance may contribute to the ability of these multipotent cells to aid the regeneration of UV-B-induced skin injuries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934474 | PMC |
http://dx.doi.org/10.1038/s41598-019-56591-9 | DOI Listing |
Pigment Cell Melanoma Res
January 2025
QIMA Life Sciences, QIMA Monasterium GmbH, Münster, Germany.
Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.
View Article and Find Full Text PDFHeliyon
January 2025
Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Makkah, 23955, Saudi Arabia.
Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Flavonol glycosides are secondary metabolites important for plant development and stress defense such as UV-B irradiation. UDP-glycosyltransferase (UGT) catalyzes the last step in the biosynthesis of flavonol glycosides. Eriobotrya japonica is abundant in flavonol glycosides, but UGTs responsible for accumulation of flavonol glycosides remain unknown.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.
The depletion of the ozone layer has resulted in elevated ultraviolet-B (UV-B) radiation levels, posing a significant risk to terrestrial plant growth. Pall. (), adapted to high-altitude and high-irradiation environments, has developed unique adaptive mechanisms.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.
Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!