Interrelations between epiphytic bacteria and macroalgae are multifaceted and complicated, though little is known about the community structure, interaction and functions of those epiphytic bacteria. This study comprehensively characterized the epiphytic bacterial communities associated with eight different common seaweeds collected from a rocky intertidal zone on the Indian Ocean at Cape Vidal, South Africa. High-throughput sequencing analyses indicated that seaweed-associated bacterial communities were dominated by the phyla Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, Planctomycetes, Actinobacteria and Verrucomicrobia. Energy-dispersive X-ray (EDX) analysis showed the presence of elemental composition in the surface of examined seaweeds, in varying concentrations. Cluster analysis showed that bacterial communities of brown seaweeds (SW2 and SW4) were closely resembled those of green seaweeds (SW1) and red seaweeds (SW7) while those of brown seaweeds formed a separate branch. Predicted functional capabilities of epiphytic bacteria using PICRUSt analysis revealed abundance of genes related to metabolic and biosynthetic activities. Further important identified functional interactions included genes for bacterial chemotaxis, which could be responsible for the observed association and network of elemental-microbes interaction. The study concludes that the diversity of epiphytic bacteria on seaweed surfaces is greatly influenced by algal organic exudates as well as elemental deposits on their surfaces, which triggers chemotaxis responses from epiphytic bacteria with the requisite genes to metabolise those substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934600PMC
http://dx.doi.org/10.1038/s41598-019-56269-2DOI Listing

Publication Analysis

Top Keywords

epiphytic bacteria
20
bacterial communities
16
epiphytic bacterial
8
rocky intertidal
8
south africa
8
brown seaweeds
8
epiphytic
7
seaweeds
7
bacterial
5
bacteria
5

Similar Publications

Meristematic and meristematic-like fungi in .

Fungal Syst Evol

December 2024

Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia (DEBIOTEC), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil.

Meristematic fungi are mainly defined as having aggregates of thick-walled, melanised cells enlarging and reproducing by isodiametric division. black meristematic and meristematic-like fungi have been allied to , which currently has two accepted families, and , with fungi mainly regarded as pathogens, parasites, saprobes and epiphytes of different plant species. This study aimed to verify the phylogenetic position using four nuclear markers (SSU, LSU, ITS and ) of the genera associated with , namely , , and , and the new genus, .

View Article and Find Full Text PDF

Towards repeated clear-cutting of boreal forests - a tipping point for biodiversity?

Biol Rev Camb Philos Soc

January 2025

Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway.

Boreal forests are important carbon sinks and host a diverse array of species that provide important ecosystem functions. Boreal forests have a long history of intensive forestry, in which even-aged management with clear-cutting has been the dominant harvesting practice for the past 50-80 years. As a second cycle of clear-cutting is emerging, there is an urgent need to examine the effects of repeated clear-cutting events on biodiversity.

View Article and Find Full Text PDF

Background: Postharvest lemons are affected by several fungal infections, and as alternatives to chemical fungicides for combating these infections, different microbial biocontrol agents have been studied, with the Clavispora lusitaniae 146 strain standing out. Although strain 146 has proven to be an effective agent, the influence of a microbial biological control agent on the postharvest lemon microbiome has not been studied until now. Thus, this study aimed to evaluate how the epiphytic microbiome of postharvest lemons is affected by the application of the biocontrol yeast C.

View Article and Find Full Text PDF

Background: Seed banks are a vital resource for preserving plant species diversity globally. However, seedling establishment and survival rates from banked seeds can be poor. Despite a growing appreciation for the role of seed-associated microbiota in supporting seed quality and plant health, our understanding of the effects of conventional seed banking processes on seed microbiomes remains limited.

View Article and Find Full Text PDF

Endophytic Bacteria from the Desiccation-Tolerant Plant and Their Potential as Plant Growth-Promoting Microorganisms.

Microorganisms

December 2024

Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico.

Bacteria associated with plants, whether rhizospheric, epiphytic, or endophytic, play a crucial role in plant productivity and health by promoting growth through complex mechanisms known as plant growth promoters. This study aimed to isolate, characterize, identify, and evaluate the potential of endophytic bacteria from the resurrection plant in enhancing plant growth, using ecotype Col. 0 as a model system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!