A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Small molecule allosteric uncoupling of microtubule depolymerase activity from motility in human Kinesin-5 during mitotic spindle assembly. | LitMetric

Human Kinesin-5 (Eg5) has a large number of known allosteric inhibitors that disrupt its mitotic function. Small-molecule inhibitors of Eg5 are candidate anti-cancer agents and important probes for understanding the cellular function. Here we show that Eg5 is capable of more than one type of microtubule interaction, and these activities can be controlled by allosteric agents. While both monastrol and S-trityl-L-cysteine inhibit Eg5 motility, our data reveal an unexpected ability of these loop5 targeting inhibitors to differentially control a novel Eg5 microtubule depolymerizing activity. Remarkably, small molecule loop5 effectors are able to independently modulate discrete functional interactions between the motor and microtubule track. We establish that motility can be uncoupled from the microtubule depolymerase activity and argue that loop5-targeting inhibitors of Kinesin-5 should not all be considered functionally synonymous. Also, the depolymerizing activity of the motor does not contribute to the genesis of monopolar spindles during allosteric inhibition of motility, but instead reveals a new function. We propose that, in addition to its canonical role in participating in the construction of the three-dimensional mitotic spindle structure, Eg5 also plays a distinct role in regulating the dynamics of individual microtubules, and thereby impacts the density of the mitotic spindle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934681PMC
http://dx.doi.org/10.1038/s41598-019-56173-9DOI Listing

Publication Analysis

Top Keywords

mitotic spindle
12
small molecule
8
microtubule depolymerase
8
depolymerase activity
8
human kinesin-5
8
depolymerizing activity
8
eg5
6
microtubule
5
allosteric
4
molecule allosteric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!