Synthesis and biological evaluation of novel 3-benzylcoumarin-imidazolium salts.

Bioorg Med Chem Lett

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China. Electronic address:

Published: February 2020

A series of novel 3-benzylcoumarin-imidazolium salts were prepared and evaluated in vitro against a panel of human tumor cell lines. The results showed that the existence of 5,6-dimethyl-benzimidazole ring and substitution of the imidazolyl-3-position with a naphthylacyl group were vital for modulating cytotoxic activity. Notably, compound 38 was found to be the most potent derivative with IC values of 2.04-4.51 μM against five human tumor cell lines, while compound 34 were more selective to SW-480 cell lines with IC value 40.0-fold lower than DDP. Mechanism of action studies indicated that compound 38 can cause the G0/G1 phase cell cycle arrest and apoptosis in SMMC-7721 cell lines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2019.126896DOI Listing

Publication Analysis

Top Keywords

cell lines
16
novel 3-benzylcoumarin-imidazolium
8
3-benzylcoumarin-imidazolium salts
8
human tumor
8
tumor cell
8
cell
5
synthesis biological
4
biological evaluation
4
evaluation novel
4
salts series
4

Similar Publications

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is an aggressive disease with a high relapse rate. In this study, we map the metabolic profile of CD34(CD38) AML cells and the extracellular vesicle signatures in circulation from AML patients at diagnosis. CD34 AML cells display high antioxidant glutathione levels and enhanced mitochondrial functionality, both associated with poor clinical outcomes.

View Article and Find Full Text PDF

D-loop mutations in mitochondrial DNA are a risk factor for chemotherapy resistance in esophageal cancer.

Sci Rep

December 2024

Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2-E2, Yamada-Oka, Suita, Osaka, 565-0871, Japan.

Esophageal cancer is a highly aggressive disease, and acquired resistance to chemotherapy remains a significant hurdle in its treatment. mtDNA, crucial for cellular energy production, is prone to mutations at a higher rate than nuclear DNA. These mutations can accumulate and disrupt cellular function; however, mtDNA mutations induced by chemotherapy in esophageal cancer remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!